
Designing	data-intensive	applications	by	martin	kleppmann	pdf

http://urseghy.com/wb3?utm_term=designing%20data-intensive%20applications%20by%20martin%20kleppmann%20pdf

NoSQL…	Big	Data…	Scalability…	CAP	Theorem…	Eventual	Consistency…	Sharding…	Nice	buzzwords,	but	how	does	the	stuff	actually	work?	As	software	engineers,	we	need	to	build	applications	that	are	reliable,	scalable	and	maintainable	in	the	long	run.	We	need	to	understand	the	range	of	available	tools	and	their	trade-offs.	For	that,	we	have	to	dig
deeper	than	buzzwords.	This	book	will	help	you	navigate	the	diverse	and	fast-changing	landscape	of	technologies	for	storing	and	processing	data.	We	compare	a	broad	variety	of	tools	and	approaches,	so	that	you	can	see	the	strengths	and	weaknesses	of	each,	and	decide	what’s	best	for	your	application.	Get	the	book	»	Tweet	Data	is	at	the	center	of
many	challenges	in	system	design	today.	Difficult	issues	need	to	be	figured	out,	such	as	scalability,	consistency,	reliability,	efficiency,	and	maintainability.	In	addition,	we	have	an	overwhelming	variety	of	tools,	including	NoSQL	datastores,	stream	or	batch	processors,	and	message	brokers.	What	are	the	right	choices	for	your	application?	How	do	you
make	sense	of	all	these	buzzwords?	In	this	practical	and	comprehensive	guide,	author	Martin	Kleppmann	helps	you	navigate	this	diverse	landscape	by	examining	the	pros	and	cons	of	various	technologies	for	processing	and	storing	data.	Software	keeps	changing,	but	the	fundamental	principles	remain	the	same.	With	this	book,	software	engineers	and
architects	will	learn	how	to	apply	those	ideas	in	practice,	and	how	to	make	full	use	of	data	in	modern	applications.Peer	under	the	hood	of	the	systems	you	already	use,	and	learn	how	to	use	and	operate	them	more	effectively	Make	informed	decisions	by	identifying	the	strengths	and	weaknesses	of	different	tools	Navigate	the	trade-offs	around
consistency,	scalability,	fault	tolerance,	and	complexity	Understand	the	distributed	systems	research	upon	which	modern	databases	are	built	Peek	behind	the	scenes	of	major	online	services,	and	learn	from	their	architecture	A	data-intensive	application	is	typically	built	from	standard	building	blocks.	They	usually	need	to:	Store	data	(databases)	Speed
up	reads	(caches)	Search	data	(search	indexes)	Send	a	message	to	another	process	asynchronously	(stream	processing)	Periodically	crunch	data	(batch	processing)	Reliability.	To	work	correctly	even	in	the	face	of	adversity.	Scalability.	Reasonable	ways	of	dealing	with	growth.	Maintainability.	Be	able	to	work	on	it	productively.	Reliability	Typical
expectations:	Application	performs	the	function	the	user	expected	Tolerate	the	user	making	mistakes	Its	performance	is	good	The	system	prevents	abuse	Systems	that	anticipate	faults	and	can	cope	with	them	are	called	fault-tolerant	or	resilient.	A	fault	is	usually	defined	as	one	component	of	the	system	deviating	from	its	spec,	whereas	failure	is	when
the	system	as	a	whole	stops	providing	the	required	service	to	the	user.	You	should	generally	prefer	tolerating	faults	over	preventing	faults.	Hardware	faults.	Until	recently	redundancy	of	hardware	components	was	sufficient	for	most	applications.	As	data	volumes	increase,	more	applications	use	a	larger	number	of	machines,	proportionally	increasing
the	rate	of	hardware	faults.	There	is	a	move	towards	systems	that	tolerate	the	loss	of	entire	machines.	A	system	that	tolerates	machine	failure	can	be	patched	one	node	at	a	time,	without	downtime	of	the	entire	system	(rolling	upgrade).	Software	errors.	It	is	unlikely	that	a	large	number	of	hardware	components	will	fail	at	the	same	time.	Software
errors	are	a	systematic	error	within	the	system,	they	tend	to	cause	many	more	system	failures	than	uncorrelated	hardware	faults.	Human	errors.	Humans	are	known	to	be	unreliable.	Configuration	errors	by	operators	are	a	leading	cause	of	outages.	You	can	make	systems	more	reliable:	Minimising	the	opportunities	for	error,	peg:	with	admin
interfaces	that	make	easy	to	do	the	"right	thing"	and	discourage	the	"wrong	thing".	Provide	fully	featured	non-production	sandbox	environments	where	people	can	explore	and	experiment	safely.	Automated	testing.	Quick	and	easy	recovery	from	human	error,	fast	to	rollback	configuration	changes,	roll	out	new	code	gradually	and	tools	to	recompute
data.	Set	up	detailed	and	clear	monitoring,	such	as	performance	metrics	and	error	rates	(telemetry).	Implement	good	management	practices	and	training.	Scalability	This	is	how	do	we	cope	with	increased	load.	We	need	to	succinctly	describe	the	current	load	on	the	system;	only	then	we	can	discuss	growth	questions.	Twitter	example	Twitter	main
operations	Post	tweet:	a	user	can	publish	a	new	message	to	their	followers	(4.6k	req/sec,	over	12k	req/sec	peak)	Home	timeline:	a	user	can	view	tweets	posted	by	the	people	they	follow	(300k	req/sec)	Two	ways	of	implementing	those	operations:	Posting	a	tweet	simply	inserts	the	new	tweet	into	a	global	collection	of	tweets.	When	a	user	requests	their
home	timeline,	look	up	all	the	people	they	follow,	find	all	the	tweets	for	those	users,	and	merge	them	(sorted	by	time).	This	could	be	done	with	a	SQL	JOIN.	Maintain	a	cache	for	each	user's	home	timeline.	When	a	user	posts	a	tweet,	look	up	all	the	people	who	follow	that	user,	and	insert	the	new	tweet	into	each	of	their	home	timeline	caches.	Approach
1,	systems	struggle	to	keep	up	with	the	load	of	home	timeline	queries.	So	the	company	switched	to	approach	2.	The	average	rate	of	published	tweets	is	almost	two	orders	of	magnitude	lower	than	the	rate	of	home	timeline	reads.	Downside	of	approach	2	is	that	posting	a	tweet	now	requires	a	lot	of	extra	work.	Some	users	have	over	30	million	followers.
A	single	tweet	may	result	in	over	30	million	writes	to	home	timelines.	Twitter	moved	to	an	hybrid	of	both	approaches.	Tweets	continue	to	be	fanned	out	to	home	timelines	but	a	small	number	of	users	with	a	very	large	number	of	followers	are	fetched	separately	and	merged	with	that	user's	home	timeline	when	it	is	read,	like	in	approach	1.	Describing
performance	What	happens	when	the	load	increases:	How	is	the	performance	affected?	How	much	do	you	need	to	increase	your	resources?	In	a	batch	processing	system	such	as	Hadoop,	we	usually	care	about	throughput,	or	the	number	of	records	we	can	process	per	second.	The	response	time	is	what	the	client	sees.	Latency	is	the	duration	that	a
request	is	waiting	to	be	handled.	It's	common	to	see	the	average	response	time	of	a	service	reported.	However,	the	mean	is	not	very	good	metric	if	you	want	to	know	your	"typical"	response	time,	it	does	not	tell	you	how	many	users	actually	experienced	that	delay.	Better	to	use	percentiles.	Median	(50th	percentile	or	p50).	Half	of	user	requests	are
served	in	less	than	the	median	response	time,	and	the	other	half	take	longer	than	the	median	Percentiles	95th,	99th	and	99.9th	(p95,	p99	and	p999)	are	good	to	figure	out	how	bad	your	outliners	are.	Amazon	describes	response	time	requirements	for	internal	services	in	terms	of	the	99.9th	percentile	because	the	customers	with	the	slowest	requests
are	often	those	who	have	the	most	data.	The	most	valuable	customers.	On	the	other	hand,	optimising	for	the	99.99th	percentile	would	be	too	expensive.	Service	level	objectives	(SLOs)	and	service	level	agreements	(SLAs)	are	contracts	that	define	the	expected	performance	and	availability	of	a	service.	An	SLA	may	state	the	median	response	time	to	be
less	than	200ms	and	a	99th	percentile	under	1s.	These	metrics	set	expectations	for	clients	of	the	service	and	allow	customers	to	demand	a	refund	if	the	SLA	is	not	met.	Queueing	delays	often	account	for	large	part	of	the	response	times	at	high	percentiles.	It	is	important	to	measure	times	on	the	client	side.	When	generating	load	artificially,	the	client
needs	to	keep	sending	requests	independently	of	the	response	time.	Calls	in	parallel,	the	end-user	request	still	needs	to	wait	for	the	slowest	of	the	parallel	calls	to	complete.	The	chance	of	getting	a	slow	call	increases	if	an	end-user	request	requires	multiple	backend	calls.	Approaches	for	coping	with	load	Scaling	up	or	vertical	scaling:	Moving	to	a
more	powerful	machine	Scaling	out	or	horizontal	scaling:	Distributing	the	load	across	multiple	smaller	machines.	Elastic	systems:	Automatically	add	computing	resources	when	detected	load	increase.	Quite	useful	if	load	is	unpredictable.	Distributing	stateless	services	across	multiple	machines	is	fairly	straightforward.	Taking	stateful	data	systems
from	a	single	node	to	a	distributed	setup	can	introduce	a	lot	of	complexity.	Until	recently	it	was	common	wisdom	to	keep	your	database	on	a	single	node.	Maintainability	The	majority	of	the	cost	of	software	is	in	its	ongoing	maintenance.	There	are	three	design	principles	for	software	systems:	Operability.	Make	it	easy	for	operation	teams	to	keep	the
system	running.	Simplicity.	Easy	for	new	engineers	to	understand	the	system	by	removing	as	much	complexity	as	possible.	Evolvability.	Make	it	easy	for	engineers	to	make	changes	to	the	system	in	the	future.	Operability:	making	life	easy	for	operations	A	good	operations	team	is	responsible	for	Monitoring	and	quickly	restoring	service	if	it	goes	into
bad	state	Tracking	down	the	cause	of	problems	Keeping	software	and	platforms	up	to	date	Keeping	tabs	on	how	different	systems	affect	each	other	Anticipating	future	problems	Establishing	good	practices	and	tools	for	development	Perform	complex	maintenance	tasks,	like	platform	migration	Maintaining	the	security	of	the	system	Defining	processes
that	make	operations	predictable	Preserving	the	organisation's	knowledge	about	the	system	Good	operability	means	making	routine	tasks	easy.	Simplicity:	managing	complexity	When	complexity	makes	maintenance	hard,	budget	and	schedules	are	often	overrun.	There	is	a	greater	risk	of	introducing	bugs.	Making	a	system	simpler	means	removing
accidental	complexity,	as	non	inherent	in	the	problem	that	the	software	solves	(as	seen	by	users).	One	of	the	best	tools	we	have	for	removing	accidental	complexity	is	abstraction	that	hides	the	implementation	details	behind	clean	and	simple	to	understand	APIs	and	facades.	Evolvability:	making	change	easy	Agile	working	patterns	provide	a	framework
for	adapting	to	change.	Functional	requirements:	what	the	application	should	do	Nonfunctional	requirements:	general	properties	like	security,	reliability,	compliance,	scalability,	compatibility	and	maintainability.	Data	models	and	query	language	Most	applications	are	built	by	layering	one	data	model	on	top	of	another.	Each	layer	hides	the	complexity
of	the	layers	below	by	providing	a	clean	data	model.	These	abstractions	allow	different	groups	of	people	to	work	effectively.	Relational	model	vs	document	model	The	roots	of	relational	databases	lie	in	business	data	processing,	transaction	processing	and	batch	processing.	The	goal	was	to	hide	the	implementation	details	behind	a	cleaner	interface.
Not	Only	SQL	has	a	few	driving	forces:	Greater	scalability	preference	for	free	and	open	source	software	Specialised	query	optimisations	Desire	for	a	more	dynamic	and	expressive	data	model	With	a	SQL	model,	if	data	is	stored	in	a	relational	tables,	an	awkward	translation	layer	is	translated,	this	is	called	impedance	mismatch.	JSON	model	reduces	the
impedance	mismatch	and	the	lack	of	schema	is	often	cited	as	an	advantage.	JSON	representation	has	better	locality	than	the	multi-table	SQL	schema.	All	the	relevant	information	is	in	one	place,	and	one	query	is	sufficient.	In	relational	databases,	it's	normal	to	refer	to	rows	in	other	tables	by	ID,	because	joins	are	easy.	In	document	databases,	joins	are
not	needed	for	one-to-many	tree	structures,	and	support	for	joins	is	often	weak.	If	the	database	itself	does	not	support	joins,	you	have	to	emulate	a	join	in	application	code	by	making	multiple	queries.	The	most	popular	database	for	business	data	processing	in	the	1970s	was	the	IBM's	Information	Management	System	(IMS).	IMS	used	a	hierarchical
model	and	like	document	databases	worked	well	for	one-to-many	relationships,	but	it	made	many-to-,any	relationships	difficult,	and	it	didn't	support	joins.	The	network	model	Standardised	by	a	committee	called	the	Conference	on	Data	Systems	Languages	(CODASYL)	model	was	a	generalisation	of	the	hierarchical	model.	In	the	tree	structure	of	the
hierarchical	model,	every	record	has	exactly	one	parent,	while	in	the	network	model,	a	record	could	have	multiple	parents.	The	links	between	records	are	like	pointers	in	a	programming	language.	The	only	way	of	accessing	a	record	was	to	follow	a	path	from	a	root	record	called	access	path.	A	query	in	CODASYL	was	performed	by	moving	a	cursor
through	the	database	by	iterating	over	a	list	of	records.	If	you	didn't	have	a	path	to	the	data	you	wanted,	you	were	in	a	difficult	situation	as	it	was	difficult	to	make	changes	to	an	application's	data	model.	The	relational	model	By	contrast,	the	relational	model	was	a	way	to	lay	out	all	the	data	in	the	open"	a	relation	(table)	is	simply	a	collection	of	tuples
(rows),	and	that's	it.	The	query	optimiser	automatically	decides	which	parts	of	the	query	to	execute	in	which	order,	and	which	indexes	to	use	(the	access	path).	The	relational	model	thus	made	it	much	easier	to	add	new	features	to	applications.	The	main	arguments	in	favour	of	the	document	data	model	are	schema	flexibility,	better	performance	due	to
locality,	and	sometimes	closer	data	structures	to	the	ones	used	by	the	applications.	The	relation	model	counters	by	providing	better	support	for	joins,	and	many-to-one	and	many-to-many	relationships.	If	the	data	in	your	application	has	a	document-like	structure,	then	it's	probably	a	good	idea	to	use	a	document	model.	The	relational	technique	of
shredding	can	lead	unnecessary	complicated	application	code.	The	poor	support	for	joins	in	document	databases	may	or	may	not	be	a	problem.	If	you	application	does	use	many-to-many	relationships,	the	document	model	becomes	less	appealing.	Joins	can	be	emulated	in	application	code	by	making	multiple	requests.	Using	the	document	model	can
lead	to	significantly	more	complex	application	code	and	worse	performance.	Schema	flexibility	Most	document	databases	do	not	enforce	any	schema	on	the	data	in	documents.	Arbitrary	keys	and	values	can	be	added	to	a	document,	when	reading,	clients	have	no	guarantees	as	to	what	fields	the	documents	may	contain.	Document	databases	are
sometimes	called	schemaless,	but	maybe	a	more	appropriate	term	is	schema-on-read,	in	contrast	to	schema-on-write.	Schema-on-read	is	similar	to	dynamic	(runtime)	type	checking,	whereas	schema-on-write	is	similar	to	static	(compile-time)	type	checking.	The	schema-on-read	approach	if	the	items	on	the	collection	don't	have	all	the	same	structure
(heterogeneous)	Many	different	types	of	objects	Data	determined	by	external	systems	Data	locality	for	queries	If	your	application	often	needs	to	access	the	entire	document,	there	is	a	performance	advantage	to	this	storage	locality.	The	database	typically	needs	to	load	the	entire	document,	even	if	you	access	only	a	small	portion	of	it.	On	updates,	the
entire	document	usually	needs	to	be	rewritten,	it	is	recommended	that	you	keep	documents	fairly	small.	Convergence	of	document	and	relational	databases	PostgreSQL	does	support	JSON	documents.	RethinkDB	supports	relational-like	joins	in	its	query	language	and	some	MongoDB	drivers	automatically	resolve	database	references.	Relational	and
document	databases	are	becoming	more	similar	over	time.	Query	languages	for	data	SQL	is	a	declarative	query	language.	In	an	imperative	language,	you	tell	the	computer	to	perform	certain	operations	in	order.	In	a	declarative	query	language	you	just	specify	the	pattern	of	the	data	you	want,	but	not	how	to	achieve	that	goal.	A	declarative	query
language	hides	implementation	details	of	the	database	engine,	making	it	possible	for	the	database	system	to	introduce	performance	improvements	without	requiring	any	changes	to	queries.	Declarative	languages	often	lend	themselves	to	parallel	execution	while	imperative	code	is	very	hard	to	parallelise	across	multiple	cores	because	it	specifies
instructions	that	must	be	performed	in	a	particular	order.	Declarative	languages	specify	only	the	pattern	of	the	results,	not	the	algorithm	that	is	used	to	determine	results.	Declarative	queries	on	the	web	In	a	web	browser,	using	declarative	CSS	styling	is	much	better	than	manipulating	styles	imperatively	in	JavaScript.	Declarative	languages	like	SQL
turned	out	to	be	much	better	than	imperative	query	APIs.	MapReduce	querying	MapReduce	is	a	programming	model	for	processing	large	amounts	of	data	in	bulk	across	many	machines,	popularised	by	Google.	Mongo	offers	a	MapReduce	solution.	db.observations.mapReduce(function	map()	{	2	var	year	=	this.observationTimestamp.getFullYear();	var
month	=	this.observationTimestamp.getMonth()	+	1;	emit(year	+	"-"	+	month,	this.numAnimals);	3	},	function	reduce(key,	values)	{	4	return	Array.sum(values);	5	},	{	query:	{	family:	"Sharks"	},	1	out:	"monthlySharkReport"	6	});	The	map	and	reduce	functions	must	be	pure	functions,	they	cannot	perform	additional	database	queries	and	they	must
not	have	any	side	effects.	These	restrictions	allow	the	database	to	run	the	functions	anywhere,	in	any	order,	and	rerun	them	on	failure.	A	usability	problem	with	MapReduce	is	that	you	have	to	write	two	carefully	coordinated	functions.	A	declarative	language	offers	more	opportunities	for	a	query	optimiser	to	improve	the	performance	of	a	query.	For
there	reasons,	MongoDB	2.2	added	support	for	a	declarative	query	language	called	aggregation	pipeline	db.observations.aggregate([{	$match:	{	family:	"Sharks"	}	},	{	$group:	{	_id:	{	year:	{	$year:	"$observationTimestamp"	},	month:	{	$month:	"$observationTimestamp"	}	},	totalAnimals:	{	$sum:	"$numAnimals"	}	}	}]);	Graph-like	data	models	If
many-to-many	relationships	are	very	common	in	your	application,	it	becomes	more	natural	to	start	modelling	your	data	as	a	graph.	A	graph	consists	of	vertices	(nodes	or	entities)	and	edges	(relationships	or	arcs).	Well-known	algorithms	can	operate	on	these	graphs,	like	the	shortest	path	between	two	points,	or	popularity	of	a	web	page.	There	are
several	ways	of	structuring	and	querying	the	data.	The	property	graph	model	(implemented	by	Neo4j,	Titan,	and	Infinite	Graph)	and	the	triple-store	model	(implemented	by	Datomic,	AllegroGraph,	and	others).	There	are	also	three	declarative	query	languages	for	graphs:	Cypher,	SPARQL,	and	Datalog.	Property	graphs	Each	vertex	consists	of:	Unique
identifier	Outgoing	edges	Incoming	edges	Collection	of	properties	(key-value	pairs)	Each	edge	consists	of:	Unique	identifier	Vertex	at	which	the	edge	starts	(tail	vertex)	Vertex	at	which	the	edge	ends	(head	vertex)	Label	to	describe	the	kind	of	relationship	between	the	two	vertices	A	collection	of	properties	(key-value	pairs)	Graphs	provide	a	great	deal
of	flexibility	for	data	modelling.	Graphs	are	good	for	evolvability.	Cypher	is	a	declarative	language	for	property	graphs	created	by	Neo4j	Graph	queries	in	SQL.	In	a	relational	database,	you	usually	know	in	advance	which	joins	you	need	in	your	query.	In	a	graph	query,	the	number	if	joins	is	not	fixed	in	advance.	In	Cypher	:WITHIN*0...	expresses	"follow
a	WITHIN	edge,	zero	or	more	times"	(like	the	*	operator	in	a	regular	expression).	This	idea	of	variable-length	traversal	paths	in	a	query	can	be	expressed	using	something	called	recursive	common	table	expressions	(the	WITH	RECURSIVE	syntax).	Triple-stores	and	SPARQL	In	a	triple-store,	all	information	is	stored	in	the	form	of	very	simple	three-part
statements:	subject,	predicate,	object	(peg:	Jim,	likes,	bananas).	A	triple	is	equivalent	to	a	vertex	in	graph.	The	SPARQL	query	language	SPARQL	is	a	query	language	for	triple-stores	using	the	RDF	data	model.	The	foundation:	Datalog	Datalog	provides	the	foundation	that	later	query	languages	build	upon.	Its	model	is	similar	to	the	triple-store	model,
generalised	a	bit.	Instead	of	writing	a	triple	(subject,	predicate,	object),	we	write	as	predicate(subject,	object).	We	define	rules	that	tell	the	database	about	new	predicates	and	rules	can	refer	to	other	rules,	just	like	functions	can	call	other	functions	or	recursively	call	themselves.	Rules	can	be	combined	and	reused	in	different	queries.	It's	less
convenient	for	simple	one-off	queries,	but	it	can	cope	better	if	your	data	is	complex.	Storage	and	retrieval	Databases	need	to	do	two	things:	store	the	data	and	give	the	data	back	to	you.	Data	structures	that	power	up	your	database	Many	databases	use	a	log,	which	is	append-only	data	file.	Real	databases	have	more	issues	to	deal	with	tho	(concurrency
control,	reclaiming	disk	space	so	the	log	doesn't	grow	forever	and	handling	errors	and	partially	written	records).	A	log	is	an	append-only	sequence	of	records	In	order	to	efficiently	find	the	value	for	a	particular	key,	we	need	a	different	data	structure:	an	index.	An	index	is	an	additional	structure	that	is	derived	from	the	primary	data.	Well-chosen
indexes	speed	up	read	queries	but	every	index	slows	down	writes.	That's	why	databases	don't	index	everything	by	default,	but	require	you	to	choose	indexes	manually	using	your	knowledge	on	typical	query	patterns.	Hash	indexes	Key-value	stores	are	quite	similar	to	the	dictionary	type	(hash	map	or	hash	table).	Let's	say	our	storage	consists	only	of
appending	to	a	file.	The	simplest	indexing	strategy	is	to	keep	an	in-memory	hash	map	where	every	key	is	mapped	to	a	byte	offset	in	the	data	file.	Whenever	you	append	a	new	key-value	pair	to	the	file,	you	also	update	the	hash	map	to	reflect	the	offset	of	the	data	you	just	wrote.	Bitcask	(the	default	storage	engine	in	Riak)	does	it	like	that.	The	only
requirement	it	has	is	that	all	the	keys	fit	in	the	available	RAM.	Values	can	use	more	space	than	there	is	available	in	memory,	since	they	can	be	loaded	from	disk.	A	storage	engine	like	Bitcask	is	well	suited	to	situations	where	the	value	for	each	key	is	updated	frequently.	There	are	a	lot	of	writes,	but	there	are	too	many	distinct	keys,	you	have	a	large
number	of	writes	per	key,	but	it's	feasible	to	keep	all	keys	in	memory.	As	we	only	ever	append	to	a	file,	so	how	do	we	avoid	eventually	running	out	of	disk	space?	A	good	solution	is	to	break	the	log	into	segments	of	certain	size	by	closing	the	segment	file	when	it	reaches	a	certain	size,	and	making	subsequent	writes	to	a	new	segment	file.	We	can	then
perform	compaction	on	these	segments.	Compaction	means	throwing	away	duplicate	keys	in	the	log,	and	keeping	only	the	most	recent	update	for	each	key.	We	can	also	merge	several	segments	together	at	the	sae	time	as	performing	the	compaction.	Segments	are	never	modified	after	they	have	been	written,	so	the	merged	segment	is	written	to	a	new
file.	Merging	and	compaction	of	frozen	segments	can	be	done	in	a	background	thread.	After	the	merging	process	is	complete,	we	switch	read	requests	to	use	the	new	merged	segment	instead	of	the	old	segments,	and	the	old	segment	files	can	simply	be	deleted.	Each	segment	now	has	its	own	in-memory	hash	table,	mapping	keys	to	file	offsets.	In	order
to	find	a	value	for	a	key,	we	first	check	the	most	recent	segment	hash	map;	if	the	key	is	not	present	we	check	the	second-most	recent	segment	and	so	on.	The	merging	process	keeps	the	number	of	segments	small,	so	lookups	don't	need	to	check	many	hash	maps.	Some	issues	that	are	important	in	a	real	implementation:	File	format.	It	is	simpler	to	use
binary	format.	Deleting	records.	Append	special	deletion	record	to	the	data	file	(tombstone)	that	tells	the	merging	process	to	discard	previous	values.	Crash	recovery.	If	restarted,	the	in-memory	hash	maps	are	lost.	You	can	recover	from	reading	each	segment	but	that	would	take	long	time.	Bitcask	speeds	up	recovery	by	storing	a	snapshot	of	each
segment	hash	map	on	disk.	Partially	written	records.	The	database	may	crash	at	any	time.	Bitcask	includes	checksums	allowing	corrupted	parts	of	the	log	to	be	detected	and	ignored.	Concurrency	control.	As	writes	are	appended	to	the	log	in	a	strictly	sequential	order,	a	common	implementation	is	to	have	a	single	writer	thread.	Segments	are
immutable,	so	they	can	be	read	concurrently	by	multiple	threads.	Append-only	design	turns	out	to	be	good	for	several	reasons:	Appending	and	segment	merging	are	sequential	write	operations,	much	faster	than	random	writes,	especially	on	magnetic	spinning-disks.	Concurrency	and	crash	recovery	are	much	simpler.	Merging	old	segments	avoids	files
getting	fragmented	over	time.	Hash	table	has	its	limitations	too:	The	hash	table	must	fit	in	memory.	It	is	difficult	to	make	an	on-disk	hash	map	perform	well.	Range	queries	are	not	efficient.	SSTables	and	LSM-Trees	We	introduce	a	new	requirement	to	segment	files:	we	require	that	the	sequence	of	key-value	pairs	is	sorted	by	key.	We	call	this	Sorted
String	Table,	or	SSTable.	We	require	that	each	key	only	appears	once	within	each	merged	segment	file	(compaction	already	ensures	that).	SSTables	have	few	big	advantages	over	log	segments	with	hash	indexes	Merging	segments	is	simple	and	efficient	(we	can	use	algorithms	like	mergesort).	When	multiple	segments	contain	the	same	key,	we	can
keep	the	value	from	the	most	recent	segment	and	discard	the	values	in	older	segments.	You	no	longer	need	to	keep	an	index	of	all	the	keys	in	memory.	For	a	key	like	handiwork,	when	you	know	the	offsets	for	the	keys	handback	and	handsome,	you	know	handiwork	must	appear	between	those	two.	You	can	jump	to	the	offset	for	handback	and	scan	from
there	until	you	find	handiwork,	if	not,	the	key	is	not	present.	You	still	need	an	in-memory	index	to	tell	you	the	offsets	for	some	of	the	keys.	One	key	for	every	few	kilobytes	of	segment	file	is	sufficient.	Since	read	requests	need	to	scan	over	several	key-value	pairs	in	the	requested	range	anyway,	it	is	possible	to	group	those	records	into	a	block	and
compress	it	before	writing	it	to	disk.	How	do	we	get	the	data	sorted	in	the	first	place?	With	red-black	trees	or	AVL	trees,	you	can	insert	keys	in	any	order	and	read	them	back	in	sorted	order.	When	a	write	comes	in,	add	it	to	an	in-memory	balanced	tree	structure	(memtable).	When	the	memtable	gets	bigger	than	some	threshold	(megabytes),	write	it
out	to	disk	as	an	SSTable	file.	Writes	can	continue	to	a	new	memtable	instance.	On	a	read	request,	try	to	find	the	key	in	the	memtable,	then	in	the	most	recent	on-disk	segment,	then	in	the	next-older	segment,	etc.	From	time	to	time,	run	merging	and	compaction	in	the	background	to	discard	overwritten	and	deleted	values.	If	the	database	crashes,	the
most	recent	writes	are	lost.	We	can	keep	a	separate	log	on	disk	to	which	every	write	is	immediately	appended.	That	log	is	not	in	sorted	order,	but	that	doesn't	matter,	because	its	only	purpose	is	to	restore	the	memtable	after	crash.	Every	time	the	memtable	is	written	out	to	an	SSTable,	the	log	can	be	discarded.	Storage	engines	that	are	based	on	this
principle	of	merging	and	compacting	sorted	files	are	often	called	LSM	structure	engines	(Log	Structure	Merge-Tree).	Lucene,	an	indexing	engine	for	full-text	search	used	by	Elasticsearch	and	Solr,	uses	a	similar	method	for	storing	its	term	dictionary.	LSM-tree	algorithm	can	be	slow	when	looking	up	keys	that	don't	exist	in	the	database.	To	optimise
this,	storage	engines	often	use	additional	Bloom	filters	(a	memory-efficient	data	structure	for	approximating	the	contents	of	a	set).	There	are	also	different	strategies	to	determine	the	order	and	timing	of	how	SSTables	are	compacted	and	merged.	Mainly	two	size-tiered	and	leveled	compaction.	LevelDB	and	RocksDB	use	leveled	compaction,	HBase	use
size-tiered,	and	Cassandra	supports	both.	In	size-tiered	compaction,	newer	and	smaller	SSTables	are	successively	merged	into	older	and	larger	SSTables.	In	leveled	compaction,	the	key	range	is	split	up	into	smaller	SSTables	and	older	data	is	moved	into	separate	"levels",	which	allows	the	compaction	to	use	less	disk	space.	B-trees	This	is	the	most
widely	used	indexing	structure.	B-tress	keep	key-value	pairs	sorted	by	key,	which	allows	efficient	key-value	lookups	and	range	queries.	The	log-structured	indexes	break	the	database	down	into	variable-size	segments	typically	several	megabytes	or	more.	B-trees	break	the	database	down	into	fixed-size	blocks	or	pages,	traditionally	4KB.	One	page	is
designated	as	the	root	and	you	start	from	there.	The	page	contains	several	keys	and	references	to	child	pages.	If	you	want	to	update	the	value	for	an	existing	key	in	a	B-tree,	you	search	for	the	leaf	page	containing	that	key,	change	the	value	in	that	page,	and	write	the	page	back	to	disk.	If	you	want	to	add	new	key,	find	the	page	and	add	it	to	the	page.
If	there	isn't	enough	free	space	in	the	page	to	accommodate	the	new	key,	it	is	split	in	two	half-full	pages,	and	the	parent	page	is	updated	to	account	for	the	new	subdivision	of	key	ranges.	Trees	remain	balanced.	A	B-tree	with	n	keys	always	has	a	depth	of	O(log	n).	The	basic	underlying	write	operation	of	a	B-tree	is	to	overwrite	a	page	on	disk	with	new
data.	It	is	assumed	that	the	overwrite	does	not	change	the	location	of	the	page,	all	references	to	that	page	remain	intact.	This	is	a	big	contrast	to	log-structured	indexes	such	as	LSM-trees,	which	only	append	to	files.	Some	operations	require	several	different	pages	to	be	overwritten.	When	you	split	a	page,	you	need	to	write	the	two	pages	that	were
split,	and	also	overwrite	their	parent.	If	the	database	crashes	after	only	some	of	the	pages	have	been	written,	you	end	up	with	a	corrupted	index.	It	is	common	to	include	an	additional	data	structure	on	disk:	a	write-ahead	log	(WAL,	also	know	as	the	redo	log).	Careful	concurrency	control	is	required	if	multiple	threads	are	going	to	access,	typically	done
protecting	the	tree	internal	data	structures	with	latches	(lightweight	locks).	B-trees	and	LSM-trees	LSM-trees	are	typically	faster	for	writes,	whereas	B-trees	are	thought	to	be	faster	for	reads.	Reads	are	typically	slower	on	LSM-tress	as	they	have	to	check	several	different	data	structures	and	SSTables	at	different	stages	of	compaction.	Advantages	of
LSM-trees:	LSM-trees	are	typically	able	to	sustain	higher	write	throughput	than	B-trees,	party	because	they	sometimes	have	lower	write	amplification:	a	write	to	the	database	results	in	multiple	writes	to	disk.	The	more	a	storage	engine	writes	to	disk,	the	fewer	writes	per	second	it	can	handle.	LSM-trees	can	be	compressed	better,	and	thus	often
produce	smaller	files	on	disk	than	B-trees.	B-trees	tend	to	leave	disk	space	unused	due	to	fragmentation.	Downsides	of	LSM-trees:	Compaction	process	can	sometimes	interfere	with	the	performance	of	ongoing	reads	and	writes.	B-trees	can	be	more	predictable.	The	bigger	the	database,	the	the	more	disk	bandwidth	is	required	for	compaction.
Compaction	cannot	keep	up	with	the	rate	of	incoming	writes,	if	not	configured	properly	you	can	run	out	of	disk	space.	On	B-trees,	each	key	exists	in	exactly	one	place	in	the	index.	This	offers	strong	transactional	semantics.	Transaction	isolation	is	implemented	using	locks	on	ranges	of	keys,	and	in	a	B-tree	index,	those	locks	can	be	directly	attached	to
the	tree.	Other	indexing	structures	We've	only	discussed	key-value	indexes,	which	are	like	primary	key	index.	There	are	also	secondary	indexes.	A	secondary	index	can	be	easily	constructed	from	a	key-value	index.	The	main	difference	is	that	in	a	secondary	index,	the	indexed	values	are	not	necessarily	unique.	There	are	two	ways	of	doing	this:	making
each	value	in	the	index	a	list	of	matching	row	identifiers	or	by	making	a	each	entry	unique	by	appending	a	row	identifier	to	it.	Full-text	search	and	fuzzy	indexes	Indexes	don't	allow	you	to	search	for	similar	keys,	such	as	misspelled	words.	Such	fuzzy	querying	requires	different	techniques.	Full-text	search	engines	allow	synonyms,	grammatical
variations,	occurrences	of	words	near	each	other.	Lucene	uses	SSTable-like	structure	for	its	term	dictionary.	Lucene,	the	in-memory	index	is	a	finite	state	automaton,	similar	to	a	trie.	Keeping	everything	in	memory	Disks	have	two	significant	advantages:	they	are	durable,	and	they	have	lower	cost	per	gigabyte	than	RAM.	It's	quite	feasible	to	keep	them
entirely	in	memory,	this	has	lead	to	in-memory	databases.	Key-value	stores,	such	as	Memcached	are	intended	for	cache	only,	it's	acceptable	for	data	to	be	lost	if	the	machine	is	restarted.	Other	in-memory	databases	aim	for	durability,	with	special	hardware,	writing	a	log	of	changes	to	disk,	writing	periodic	snapshots	to	disk	or	by	replicating	in-memory
sate	to	other	machines.	When	an	in-memory	database	is	restarted,	it	needs	to	reload	its	state,	either	from	disk	or	over	the	network	from	a	replica.	The	disk	is	merely	used	as	an	append-only	log	for	durability,	and	reads	are	served	entirely	from	memory.	Products	such	as	VoltDB,	MemSQL,	and	Oracle	TimesTime	are	in-memory	databases.	Redis	and
Couchbase	provide	weak	durability.	In-memory	databases	can	be	faster	because	they	can	avoid	the	overheads	of	encoding	in-memory	data	structures	in	a	form	that	can	be	written	to	disk.	Another	interesting	area	is	that	in-memory	databases	may	provide	data	models	that	are	difficult	to	implement	with	disk-based	indexes.	Transaction	processing	or
analytics?	A	transaction	is	a	group	of	reads	and	writes	that	form	a	logical	unit,	this	pattern	became	known	as	online	transaction	processing	(OLTP).	Data	analytics	has	very	different	access	patterns.	A	query	would	need	to	scan	over	a	huge	number	of	records,	only	reading	a	few	columns	per	record,	and	calculates	aggregate	statistics.	These	queries	are
often	written	by	business	analysts,	and	fed	into	reports.	This	pattern	became	known	for	online	analytics	processing	(OLAP).	Data	warehousing	A	data	warehouse	is	a	separate	database	that	analysts	can	query	to	their	heart's	content	without	affecting	OLTP	operations.	It	contains	read-only	copy	of	the	dat	in	all	various	OLTP	systems	in	the	company.
Data	is	extracted	out	of	OLTP	databases	(through	periodic	data	dump	or	a	continuous	stream	of	update),	transformed	into	an	analysis-friendly	schema,	cleaned	up,	and	then	loaded	into	the	data	warehouse	(process	Extract-Transform-Load	or	ETL).	A	data	warehouse	is	most	commonly	relational,	but	the	internals	of	the	systems	can	look	quite	different.
Amazon	RedShift	is	hosted	version	of	ParAccel.	Apache	Hive,	Spark	SQL,	Cloudera	Impala,	Facebook	Presto,	Apache	Tajo,	and	Apache	Drill.	Some	of	them	are	based	on	ideas	from	Google's	Dremel.	Data	warehouses	are	used	in	fairly	formulaic	style	known	as	a	star	schema.	Facts	are	captured	as	individual	events,	because	this	allows	maximum
flexibility	of	analysis	later.	The	fact	table	can	become	extremely	large.	Dimensions	represent	the	who,	what,	where,	when,	how	and	why	of	the	event.	The	name	"star	schema"	comes	from	the	fact	than	when	the	table	relationships	are	visualised,	the	fact	table	is	in	the	middle,	surrounded	by	its	dimension	tables,	like	the	rays	of	a	star.	Fact	tables	often
have	over	100	columns,	sometimes	several	hundred.	Dimension	tables	can	also	be	very	wide.	Column-oriented	storage	In	a	row-oriented	storage	engine,	when	you	do	a	query	that	filters	on	a	specific	field,	the	engine	will	load	all	those	rows	with	all	their	fields	into	memory,	parse	them	and	filter	out	the	ones	that	don't	meet	the	requirement.	This	can
take	a	long	time.	Column-oriented	storage	is	simple:	don't	store	all	the	values	from	one	row	together,	but	store	all	values	from	each	column	together	instead.	If	each	column	is	stored	in	a	separate	file,	a	query	only	needs	to	read	and	parse	those	columns	that	are	used	in	a	query,	which	can	save	a	lot	of	work.	Column-oriented	storage	often	lends	itself
very	well	to	compression	as	the	sequences	of	values	for	each	column	look	quite	repetitive,	which	is	a	good	sign	for	compression.	A	technique	that	is	particularly	effective	in	data	warehouses	is	bitmap	encoding.	Bitmap	indexes	are	well	suited	for	all	kinds	of	queries	that	are	common	in	a	data	warehouse.	Cassandra	and	HBase	have	a	concept	of	column
families,	which	they	inherited	from	Bigtable.	Besides	reducing	the	volume	of	data	that	needs	to	be	loaded	from	disk,	column-oriented	storage	layouts	are	also	good	for	making	efficient	use	of	CPU	cycles	(vectorised	processing).	Column-oriented	storage,	compression,	and	sorting	helps	to	make	read	queries	faster	and	make	sense	in	data	warehouses,
where	most	of	the	load	consist	on	large	read-only	queries	run	by	analysts.	The	downside	is	that	writes	are	more	difficult.	An	update-in-place	approach,	like	B-tree	use,	is	not	possible	with	compressed	columns.	If	you	insert	a	row	in	the	middle	of	a	sorted	table,	you	would	most	likely	have	to	rewrite	all	column	files.	It's	worth	mentioning	materialised
aggregates	as	some	cache	of	the	counts	ant	the	sums	that	queries	use	most	often.	A	way	of	creating	such	a	cache	is	with	a	materialised	view,	on	a	relational	model	this	is	usually	called	a	virtual	view:	a	table-like	object	whose	contents	are	the	results	of	some	query.	A	materialised	view	is	an	actual	copy	of	the	query	results,	written	in	disk,	whereas	a
virtual	view	is	just	a	shortcut	for	writing	queries.	When	the	underlying	data	changes,	a	materialised	view	needs	to	be	updated,	because	it	is	denormalised	copy	of	the	data.	Database	can	do	it	automatically,	but	writes	would	become	more	expensive.	A	common	special	case	of	a	materialised	view	is	know	as	a	data	cube	or	OLAP	cube,	a	grid	of
aggregates	grouped	by	different	dimensions.	Encoding	and	evolution	Change	to	an	application's	features	also	requires	a	change	to	data	it	stores.	Relational	databases	conforms	to	one	schema	although	that	schema	can	be	changed,	there	is	one	schema	in	force	at	any	point	in	time.	Schema-on-read	(or	schemaless)	contain	a	mixture	of	older	and	newer
data	formats.	In	large	applications	changes	don't	happen	instantaneously.	You	want	to	perform	a	rolling	upgrade	and	deploy	a	new	version	to	a	few	nodes	at	a	time,	gradually	working	your	way	through	all	the	nodes	without	service	downtime.	Old	and	new	versions	of	the	code,	and	old	and	new	data	formats,	may	potentially	all	coexist.	We	need	to
maintain	compatibility	in	both	directions	Backward	compatibility,	newer	code	can	read	data	that	was	written	by	older	code.	Forward	compatibility,	older	code	can	read	data	that	was	written	by	newer	code.	Formats	for	encoding	data	Two	different	representations:	In	memory	When	you	want	to	write	data	to	a	file	or	send	it	over	the	network,	you	have
to	encode	it	Thus,	you	need	a	translation	between	the	two	representations.	In-memory	representation	to	byte	sequence	is	called	encoding	(serialisation	or	marshalling),	and	the	reverse	is	called	decoding	(parsing,	deserialisation	or	unmarshalling).	Programming	languages	come	with	built-in	support	for	encoding	in-memory	objects	into	byte	sequences,
but	is	usually	a	bad	idea	to	use	them.	Precisely	because	of	a	few	problems.	Often	tied	to	a	particular	programming	language.	The	decoding	process	needs	to	be	able	to	instantiate	arbitrary	classes	and	this	is	frequently	a	security	hole.	Versioning	Efficiency	Standardised	encodings	can	be	written	and	read	by	many	programming	languages.	JSON,	XML,
and	CSV	are	human-readable	and	popular	specially	as	data	interchange	formats,	but	they	have	some	subtle	problems:	Ambiguity	around	the	encoding	of	numbers	and	dealing	with	large	numbers	Support	of	Unicode	character	strings,	but	no	support	for	binary	strings.	People	get	around	this	by	encoding	binary	data	as	Base64,	which	increases	the	data
size	by	33%.	There	is	optional	schema	support	for	both	XML	and	JSON	CSV	does	not	have	any	schema	Binary	encoding	JSON	is	less	verbose	than	XML,	but	both	still	use	a	lot	of	space	compared	to	binary	formats.	There	are	binary	encodings	for	JSON	(MesagePack,	BSON,	BJSON,	UBJSON,	BISON	and	Smile),	similar	thing	for	XML	(WBXML	and	Fast
Infoset).	Apache	Thrift	and	Protocol	Buffers	(protobuf)	are	binary	encoding	libraries.	Thrift	offers	two	different	protocols:	BinaryProtocol,	there	are	no	field	names	like	userName,	favouriteNumber.	Instead	the	data	contains	field	tags,	which	are	numbers	(1,	2)	CompactProtocol,	which	is	equivalent	to	BinaryProtocol	but	it	packs	the	same	information	in
less	space.	It	packs	the	field	type	and	the	tag	number	into	the	same	byte.	Protocol	Buffers	are	very	similar	to	Thrift's	CompactProtocol,	bit	packing	is	a	bit	different	and	that	might	allow	smaller	compression.	Schemas	inevitable	need	to	change	over	time	(schema	evolution),	how	do	Thrift	and	Protocol	Buffers	handle	schema	changes	while	keeping
backward	and	forward	compatibility	changes?	Forward	compatible	support.	As	with	new	fields	you	add	new	tag	numbers,	old	code	trying	to	read	new	code,	it	can	simply	ignore	not	recognised	tags.	Backwards	compatible	support.	As	long	as	each	field	has	a	unique	tag	number,	new	code	can	always	read	old	data.	Every	field	you	add	after	initial
deployment	of	schema	must	be	optional	or	have	a	default	value.	Removing	fields	is	just	like	adding	a	field	with	backward	and	forward	concerns	reversed.	You	can	only	remove	a	field	that	is	optional,	and	you	can	never	use	the	same	tag	again.	What	about	changing	the	data	type	of	a	field?	There	is	a	risk	that	values	will	lose	precision	or	get	truncated.
Avro	Apache	Avro	is	another	binary	format	that	has	two	schema	languages,	one	intended	for	human	editing	(Avro	IDL),	and	one	(based	on	JSON)	that	is	more	easily	machine-readable.	You	go	go	through	the	fields	in	the	order	they	appear	in	the	schema	and	use	the	schema	to	tell	you	the	datatype	of	each	field.	Any	mismatch	in	the	schema	between	the
reader	and	the	writer	would	mean	incorrectly	decoded	data.	What	about	schema	evolution?	When	an	application	wants	to	encode	some	data,	it	encodes	the	data	using	whatever	version	of	the	schema	it	knows	(writer's	schema).	When	an	application	wants	to	decode	some	data,	it	is	expecting	the	data	to	be	in	some	schema	(reader's	schema).	In	Avro
the	writer's	schema	and	the	reader's	schema	don't	have	to	be	the	same.	The	Avro	library	resolves	the	differences	by	looking	at	the	writer's	schema	and	the	reader's	schema.	Forward	compatibility	means	you	can	have	a	new	version	of	the	schema	as	writer	and	an	old	version	of	the	schema	as	reader.	Conversely,	backward	compatibility	means	that	you
can	have	a	new	version	of	the	schema	as	reader	and	an	old	version	as	writer.	To	maintain	compatibility,	you	may	only	add	or	remove	a	field	that	has	a	default	value.	If	you	were	to	add	a	field	that	has	no	default	value,	new	readers	wouldn't	be	able	to	read	data	written	by	old	writers.	Changing	the	datatype	of	a	field	is	possible,	provided	that	Avro	can
convert	the	type.	Changing	the	name	of	a	filed	is	tricky	(backward	compatible	but	not	forward	compatible).	The	schema	is	identified	encoded	in	the	data.	In	a	large	file	with	lots	of	records,	the	writer	of	the	file	can	just	include	the	schema	at	the	beginning	of	the	file.	On	a	database	with	individually	written	records,	you	cannot	assume	all	the	records	will
have	the	same	schema,	so	you	have	to	include	a	version	number	at	the	beginning	of	every	encoded	record.	While	sending	records	over	the	network,	you	can	negotiate	the	schema	version	on	connection	setup.	Avro	is	friendlier	to	dynamically	generated	schemas	(dumping	into	a	file	the	database).	You	can	fairly	easily	generate	an	Avro	schema	in	JSON.
If	the	database	schema	changes,	you	can	just	generate	a	new	Avro	schema	for	the	updated	database	schema	and	export	data	in	the	new	Avro	schema.	By	contrast	with	Thrift	and	Protocol	Buffers,	every	time	the	database	schema	changes,	you	would	have	to	manually	update	the	mappings	from	database	column	names	to	field	tags.	Although	textual
formats	such	as	JSON,	XML	and	CSV	are	widespread,	binary	encodings	based	on	schemas	are	also	a	viable	option.	As	they	have	nice	properties:	Can	be	much	more	compact,	since	they	can	omit	field	names	from	the	encoded	data.	Schema	is	a	valuable	form	of	documentation,	required	for	decoding,	you	can	be	sure	it	is	up	to	date.	Database	of	schemas
allows	you	to	check	forward	and	backward	compatibility	changes.	Generate	code	from	the	schema	is	useful,	since	it	enables	type	checking	at	compile	time.	Modes	of	dataflow	Different	process	on	how	data	flows	between	processes	Via	databases	The	process	that	writes	to	the	database	encodes	the	data,	and	the	process	that	reads	from	the	database
decodes	it.	A	value	in	the	database	may	be	written	by	a	newer	version	of	the	code,	and	subsequently	read	by	an	older	version	of	the	code	that	is	still	running.	When	a	new	version	of	your	application	is	deployed,	you	may	entirely	replace	the	old	version	with	the	new	version	within	a	few	minutes.	The	same	is	not	true	in	databases,	the	five-year-old	data
will	still	be	there,	in	the	original	encoding,	unless	you	have	explicitly	rewritten	it.	Data	outlives	code.	Rewriting	(migrating)	is	expensive,	most	relational	databases	allow	simple	schema	changes,	such	as	adding	a	new	column	with	a	null	default	value	without	rewriting	existing	data.	When	an	old	row	is	read,	the	database	fills	in	nulls	for	any	columns
that	are	missing.	Via	service	calls	You	have	processes	that	need	to	communicate	over	a	network	of	clients	and	servers.	Services	are	similar	to	databases,	each	service	should	be	owned	by	one	team.	and	that	team	should	be	able	to	release	versions	of	the	service	frequently,	without	having	to	coordinate	with	other	teams.	We	should	expect	old	and	new
versions	of	servers	and	clients	to	be	running	at	the	same	time.	Remote	procedure	calls	(RPC)	tries	to	make	a	request	to	a	remote	network	service	look	the	same	as	calling	a	function	or	method	in	your	programming	language,	it	seems	convenient	at	first	but	the	approach	is	flawed:	A	network	request	is	unpredictable	A	network	request	it	may	return
without	a	result,	due	a	timeout	Retrying	will	cause	the	action	to	be	performed	multiple	times,	unless	you	build	a	mechanism	for	deduplication	(idempotence).	A	network	request	is	much	slower	than	a	function	call,	and	its	latency	is	wildly	variable.	Parameters	need	to	be	encoded	into	a	sequence	of	bytes	that	can	be	sent	over	the	network	and	becomes
problematic	with	larger	objects.	The	RPC	framework	must	translate	datatypes	from	one	language	to	another,	not	all	languages	have	the	same	types.	There	is	no	point	trying	to	make	a	remote	service	look	too	much	like	a	local	object	in	your	programming	language,	because	it's	a	fundamentally	different	thing.	New	generation	of	RPC	frameworks	are
more	explicit	about	the	fact	that	a	remote	request	is	different	from	a	local	function	call.	Fiangle	and	Rest.li	use	features	(promises)	to	encapsulate	asyncrhonous	actions.	RESTful	API	has	some	significant	advantages	like	being	good	for	experimentation	and	debugging.	REST	seems	to	be	the	predominant	style	for	public	APIs.	The	main	focus	of	RPC
frameworks	is	on	requests	between	services	owned	by	the	same	organisation,	typically	within	the	same	datacenter.	Via	asynchronous	message	passing	In	an	asynchronous	message-passing	systems,	a	client's	request	(usually	called	a	message)	is	delivered	to	another	process	with	low	latency.	The	message	goes	via	an	intermediary	called	a	message
broker	(message	queue	or	message-oriented	middleware)	which	stores	the	message	temporarily.	This	has	several	advantages	compared	to	direct	RPC:	It	can	act	as	a	buffer	if	the	recipient	is	unavailable	or	overloaded	It	can	automatically	redeliver	messages	to	a	process	that	has	crashed	and	prevent	messages	from	being	lost	It	avoids	the	sender
needing	to	know	the	IP	address	and	port	number	of	the	recipient	(useful	in	a	cloud	environment)	It	allows	one	message	to	be	sent	to	several	recipients	Decouples	the	sender	from	the	recipient	The	communication	happens	only	in	one	direction.	The	sender	doesn't	wait	for	the	message	to	be	delivered,	but	simply	sends	it	and	then	forgets	about	it
(asynchronous).	Open	source	implementations	for	message	brokers	are	RabbitMQ,	ActiveMQ,	HornetQ,	NATS,	and	Apache	Kafka.	One	process	sends	a	message	to	a	named	queue	or	topic	and	the	broker	ensures	that	the	message	is	delivered	to	one	or	more	consumers	or	subscribers	to	that	queue	or	topic.	Message	brokers	typically	don't	enforce	a
particular	data	model,	you	can	use	any	encoding	format.	An	actor	model	is	a	programming	model	for	concurrency	in	a	single	process.	Rather	than	dealing	with	threads	(and	their	complications),	logic	is	encapsulated	in	actors.	Each	actor	typically	represent	one	client	or	entity,	it	may	have	some	local	state,	and	it	communicates	with	other	actors	by
sending	and	receiving	asynchronous	messages.	Message	deliver	is	not	guaranteed.	Since	each	actor	processes	only	one	message	at	a	time,	it	doesn't	need	to	worry	about	threads.	In	distributed	actor	frameworks,	this	programming	model	is	used	to	scale	an	application	across	multiple	nodes.	It	basically	integrates	a	message	broker	and	the	actor	model
into	a	single	framework.	Akka	uses	Java's	built-in	serialisation	by	default,	which	does	not	provide	forward	or	backward	compatibility.	You	can	replace	it	with	something	like	Protocol	Buffers	and	the	ability	to	do	rolling	upgrades.	Orleans	by	default	uses	custom	data	encoding	format	that	does	not	support	rolling	upgrade	deployments.	In	Erlang	OTP	it	is
surprisingly	hard	to	make	changes	to	record	schemas.	What	happens	if	multiple	machines	are	involved	in	storage	and	retrieval	of	data?	Reasons	for	distribute	a	database	across	multiple	machines:	Scalability	Fault	tolerance/high	availability	Latency,	having	servers	at	various	locations	worldwide	Replication	Reasons	why	you	might	want	to	replicate
data:	To	keep	data	geographically	close	to	your	users	Increase	availability	Increase	read	throughput	The	difficulty	in	replication	lies	in	handling	changes	to	replicated	data.	Popular	algorithms	for	replicating	changes	between	nodes:	single-leader,	multi-leader,	and	leaderless	replication.	Leaders	and	followers	Each	node	that	stores	a	copy	of	the
database	is	called	a	replica.	Every	write	to	the	database	needs	to	be	processed	by	every	replica.	The	most	common	solution	for	this	is	called	leader-based	replication	(active/passive	or	master-slave	replication).	One	of	the	replicas	is	designated	the	leader	(master	or	primary).	Writes	to	the	database	must	send	requests	to	the	leader.	Other	replicas	are
known	as	followers	(read	replicas,	slaves,	secondaries	or	hot	stanbys).	The	leader	sends	the	data	change	to	all	of	its	followers	as	part	of	a	replication	log	or	change	stream.	Reads	can	be	query	the	leader	or	any	of	the	followers,	while	writes	are	only	accepted	on	the	leader.	MySQL,	Oracle	Data	Guard,	SQL	Server's	AlwaysOn	Availability	Groups,
MongoDB,	RethinkDB,	Espresso,	Kafka	and	RabbitMQ	are	examples	of	these	kind	of	databases.	Synchronous	vs	asynchronous	The	advantage	of	synchronous	replication	is	that	the	follower	is	guaranteed	to	have	an	up-to-date	copy	of	the	data	that	is	consistent	with	the	leader.	The	disadvantage	is	that	it	the	synchronous	follower	doesn't	respond,	the
write	cannot	be	processed.	It's	impractical	for	all	followers	to	be	synchronous.	If	you	enable	synchronous	replication	on	a	database,	it	usually	means	that	one	of	the	followers	is	synchronous,	and	the	others	are	asynchronous.	This	guarantees	up-to-date	copy	of	the	data	on	at	least	two	nodes	(this	is	sometimes	called	semi-synchronous).	Often,	leader-
based	replication	is	asynchronous.	Writes	are	not	guaranteed	to	be	durable,	the	main	advantage	of	this	approach	is	that	the	leader	can	continue	processing	writes.	Setting	up	new	followers	Copying	data	files	from	one	node	to	another	is	typically	not	sufficient.	Setting	up	a	follower	can	usually	be	done	without	downtime.	The	process	looks	like:	Take	a
snapshot	of	the	leader's	database	Copy	the	snapshot	to	the	follower	node	Follower	requests	data	changes	that	have	happened	since	the	snapshot	was	taken	Once	follower	processed	the	backlog	of	data	changes	since	snapshot,	it	has	caught	up.	Handling	node	outages	How	does	high	availability	works	with	leader-based	replication?	Follower	failure:
catchup	recovery	Follower	can	connect	to	the	leader	and	request	all	the	data	changes	that	occurred	during	the	time	when	the	follower	was	disconnected.	Leader	failure:	failover	One	of	the	followers	needs	to	be	promoted	to	be	the	new	leader,	clients	need	to	be	reconfigured	to	send	their	writes	to	the	new	leader	and	followers	need	to	start	consuming
data	changes	from	the	new	leader.	Automatic	failover	consists:	Determining	that	the	leader	has	failed.	If	a	node	does	not	respond	in	a	period	of	time	it's	considered	dead.	Choosing	a	new	leader.	The	best	candidate	for	leadership	is	usually	the	replica	with	the	most	up-to-date	changes	from	the	old	leader.	Reconfiguring	the	system	to	use	the	new	leader.
The	system	needs	to	ensure	that	the	old	leader	becomes	a	follower	and	recognises	the	new	leader.	Things	that	could	go	wrong:	If	asynchronous	replication	is	used,	the	new	leader	may	have	received	conflicting	writes	in	the	meantime.	Discarding	writes	is	especially	dangerous	if	other	storage	systems	outside	of	the	database	need	to	be	coordinated
with	the	database	contents.	It	could	happen	that	two	nodes	both	believe	that	they	are	the	leader	(split	brain).	Data	is	likely	to	be	lost	or	corrupted.	What	is	the	right	time	before	the	leader	is	declared	dead?	For	these	reasons,	some	operation	teams	prefer	to	perform	failovers	manually,	even	if	the	software	supports	automatic	failover.	Implementation	of
replication	logs	Statement-based	replication	The	leader	logs	every	statement	and	sends	it	to	its	followers	(every	INSERT,	UPDATE	or	DELETE).	This	type	of	replication	has	some	problems:	Non-deterministic	functions	such	as	NOW()	or	RAND()	will	generate	different	values	on	replicas.	Statements	that	depend	on	existing	data,	like	auto-increments,
must	be	executed	in	the	same	order	in	each	replica.	Statements	with	side	effects	may	result	on	different	results	on	each	replica.	A	solution	to	this	is	to	replace	any	nondeterministic	function	with	a	fixed	return	value	in	the	leader.	Write-ahead	log	(WAL)	shipping	The	log	is	an	append-only	sequence	of	bytes	containing	all	writes	to	the	database.	The
leader	can	send	it	to	its	followers.	This	way	of	replication	is	used	in	PostgresSQL	and	Oracle.	The	main	disadvantage	is	that	the	log	describes	the	data	at	a	very	low	level	(like	which	bytes	were	changed	in	which	disk	blocks),	coupling	it	to	the	storage	engine.	Usually	is	not	possible	to	run	different	versions	of	the	database	in	leaders	and	followers.	This
can	have	a	big	operational	impact,	like	making	it	impossible	to	have	a	zero-downtime	upgrade	of	the	database.	Logical	(row-based)	log	replication	Basically	a	sequence	of	records	describing	writes	to	database	tables	at	the	granularity	of	a	row:	For	an	inserted	row,	the	new	values	of	all	columns.	For	a	deleted	row,	the	information	that	uniquely
identifies	that	column.	For	an	updated	row,	the	information	to	uniquely	identify	that	row	and	all	the	new	values	of	the	columns.	A	transaction	that	modifies	several	rows,	generates	several	of	such	logs,	followed	by	a	record	indicating	that	the	transaction	was	committed.	MySQL	binlog	uses	this	approach.	Since	logical	log	is	decoupled	from	the	storage
engine	internals,	it's	easier	to	make	it	backwards	compatible.	Logical	logs	are	also	easier	for	external	applications	to	parse,	useful	for	data	warehouses,	custom	indexes	and	caches	(change	data	capture).	Trigger-based	replication	There	are	some	situations	were	you	may	need	to	move	replication	up	to	the	application	layer.	A	trigger	lets	you	register
custom	application	code	that	is	automatically	executed	when	a	data	change	occurs.	This	is	a	good	opportunity	to	log	this	change	into	a	separate	table,	from	which	it	can	be	read	by	an	external	process.	Main	disadvantages	is	that	this	approach	has	greater	overheads,	is	more	prone	to	bugs	but	it	may	be	useful	due	to	its	flexibility.	Problems	with
replication	lag	Node	failures	is	just	one	reason	for	wanting	replication.	Other	reasons	are	scalability	and	latency.	In	a	read-scaling	architecture,	you	can	increase	the	capacity	for	serving	read-only	requests	simply	by	adding	more	followers.	However,	this	only	realistically	works	on	asynchronous	replication.	The	more	nodes	you	have,	the	likelier	is	that
one	will	be	down,	so	a	fully	synchronous	configuration	would	be	unreliable.	With	an	asynchronous	approach,	a	follower	may	fall	behind,	leading	to	inconsistencies	in	the	database	(eventual	consistency).	The	replication	lag	could	be	a	fraction	of	a	second	or	several	seconds	or	even	minutes.	The	problems	that	may	arise	and	how	to	solve	them.	Reading
your	own	writes	Read-after-write	consistency,	also	known	as	read-your-writes	consistency	is	a	guarantee	that	if	the	user	reloads	the	page,	they	will	always	see	any	updates	they	submitted	themselves.	How	to	implement	it:	When	reading	something	that	the	user	may	have	modified,	read	it	from	the	leader.	For	example,	user	profile	information	on	a
social	network	is	normally	only	editable	by	the	owner.	A	simple	rule	is	always	read	the	user's	own	profile	from	the	leader.	You	could	track	the	time	of	the	latest	update	and,	for	one	minute	after	the	last	update,	make	all	reads	from	the	leader.	The	client	can	remember	the	timestamp	of	the	most	recent	write,	then	the	system	can	ensure	that	the	replica
serving	any	reads	for	that	user	reflects	updates	at	least	until	that	timestamp.	If	your	replicas	are	distributed	across	multiple	datacenters,	then	any	request	needs	to	be	routed	to	the	datacenter	that	contains	the	leader.	Another	complication	is	that	the	same	user	is	accessing	your	service	from	multiple	devices,	you	may	want	to	provide	cross-device
read-after-write	consistency.	Some	additional	issues	to	consider:	Remembering	the	timestamp	of	the	user's	last	update	becomes	more	difficult.	The	metadata	will	need	to	be	centralised.	If	replicas	are	distributed	across	datacenters,	there	is	no	guarantee	that	connections	from	different	devices	will	be	routed	to	the	same	datacenter.	You	may	need	to
route	requests	from	all	of	a	user's	devices	to	the	same	datacenter.	Monotonic	reads	Because	of	followers	falling	behind,	it's	possible	for	a	user	to	see	things	moving	backward	in	time.	When	you	read	data,	you	may	see	an	old	value;	monotonic	reads	only	means	that	if	one	user	makes	several	reads	in	sequence,	they	will	not	see	time	go	backward.	Make
sure	that	each	user	always	makes	their	reads	from	the	same	replica.	The	replica	can	be	chosen	based	on	a	hash	of	the	user	ID.	If	the	replica	fails,	the	user's	queries	will	need	to	be	rerouted	to	another	replica.	Consistent	prefix	reads	If	a	sequence	of	writes	happens	in	a	certain	order,	then	anyone	reading	those	writes	will	see	them	appear	in	the	same
order.	This	is	a	particular	problem	in	partitioned	(sharded)	databases	as	there	is	no	global	ordering	of	writes.	A	solution	is	to	make	sure	any	writes	casually	related	to	each	other	are	written	to	the	same	partition.	Solutions	for	replication	lag	Transactions	exist	so	there	is	a	way	for	a	database	to	provide	stronger	guarantees	so	that	the	application	can	be
simpler.	Multi-leader	replication	Leader-based	replication	has	one	major	downside:	there	is	only	one	leader,	and	all	writes	must	go	through	it.	A	natural	extension	is	to	allow	more	than	one	node	to	accept	writes	(multi-leader,	master-master	or	active/active	replication)	where	each	leader	simultaneously	acts	as	a	follower	to	the	other	leaders.	Use	cases
for	multi-leader	replication	It	rarely	makes	sense	to	use	multi-leader	setup	within	a	single	datacenter.	Multi-datacenter	operation	You	can	have	a	leader	in	each	datacenter.	Within	each	datacenter,	regular	leader-follower	replication	is	used.	Between	datacenters,	each	datacenter	leader	replicates	its	changes	to	the	leaders	in	other	datacenters.
Compared	to	a	single-leader	replication	model	deployed	in	multi-datacenters	Performance.	With	single-leader,	every	write	must	go	across	the	internet	to	wherever	the	leader	is,	adding	significant	latency.	In	multi-leader	every	write	is	processed	in	the	local	datacenter	and	replicated	asynchronously	to	other	datacenters.	The	network	delay	is	hidden
from	users	and	perceived	performance	may	be	better.	Tolerance	of	datacenter	outages.	In	single-leader	if	the	datacenter	with	the	leader	fails,	failover	can	promote	a	follower	in	another	datacenter.	In	multi-leader,	each	datacenter	can	continue	operating	independently	from	others.	Tolerance	of	network	problems.	Single-leader	is	very	sensitive	to
problems	in	this	inter-datacenter	link	as	writes	are	made	synchronously	over	this	link.	Multi-leader	with	asynchronous	replication	can	tolerate	network	problems	better.	Multi-leader	replication	is	implemented	with	Tungsten	Replicator	for	MySQL,	BDR	for	PostgreSQL	or	GoldenGate	for	Oracle.	It's	common	to	fall	on	subtle	configuration	pitfalls.
Autoincrementing	keys,	triggers	and	integrity	constraints	can	be	problematic.	Multi-leader	replication	is	often	considered	dangerous	territory	and	avoided	if	possible.	Clients	with	offline	operation	If	you	have	an	application	that	needs	to	continue	to	work	while	it	is	disconnected	from	the	internet,	every	device	that	has	a	local	database	can	act	as	a
leader,	and	there	will	be	some	asynchronous	multi-leader	replication	process	(imagine,	a	Calendar	application).	CouchDB	is	designed	for	this	mode	of	operation.	Collaborative	editing	Real-time	collaborative	editing	applications	allow	several	people	to	edit	a	document	simultaneously.	Like	Etherpad	or	Google	Docs.	The	user	edits	a	document,	the
changes	are	instantly	applied	to	their	local	replica	and	asynchronously	replicated	to	the	server	and	any	other	user.	If	you	want	to	avoid	editing	conflicts,	you	must	the	lock	the	document	before	a	user	can	edit	it.	For	faster	collaboration,	you	may	want	to	make	the	unit	of	change	very	small	(like	a	keystroke)	and	avoid	locking.	Handling	write	conflicts
The	biggest	problem	with	multi-leader	replication	is	when	conflict	resolution	is	required.	This	problem	does	not	happen	in	a	single-leader	database.	Synchronous	vs	asynchronous	conflict	detection	In	single-leader	the	second	writer	can	be	blocked	and	wait	the	first	one	to	complete,	forcing	the	user	to	retry	the	write.	On	multi-leader	if	both	writes	are
successful,	the	conflict	is	only	detected	asynchronously	later	in	time.	If	you	want	synchronous	conflict	detection,	you	might	as	well	use	single-leader	replication.	Conflict	avoidance	The	simplest	strategy	for	dealing	with	conflicts	is	to	avoid	them.	If	all	writes	for	a	particular	record	go	through	the	sae	leader,	then	conflicts	cannot	occur.	On	an
application	where	a	user	can	edit	their	own	data,	you	can	ensure	that	requests	from	a	particular	user	are	always	routed	to	the	same	datacenter	and	use	the	leader	in	that	datacenter	for	reading	and	writing.	Converging	toward	a	consistent	state	On	single-leader,	the	last	write	determines	the	final	value	of	the	field.	In	multi-leader,	it's	not	clear	what	the
final	value	should	be.	The	database	must	resolve	the	conflict	in	a	convergent	way,	all	replicas	must	arrive	a	the	same	final	value	when	all	changes	have	been	replicated.	Different	ways	of	achieving	convergent	conflict	resolution.	Five	each	write	a	unique	ID	(timestamp,	long	random	number,	UUID,	or	a	has	of	the	key	and	value),	pick	the	write	with	the
highest	ID	as	the	winner	and	throw	away	the	other	writes.	This	is	known	as	last	write	wins	(LWW)	and	it	is	dangerously	prone	to	data	loss.	Give	each	replica	a	unique	ID,	writes	that	originated	at	a	higher-numbered	replica	always	take	precedence.	This	approach	also	implies	data	loss.	Somehow	merge	the	values	together.	Record	the	conflict	and	write
application	code	that	resolves	it	a	to	some	later	time	(perhaps	prompting	the	user).	Custom	conflict	resolution	Multi-leader	replication	tools	let	you	write	conflict	resolution	logic	using	application	code.	On	write.	As	soon	as	the	database	system	detects	a	conflict	in	the	log	of	replicated	changes,	it	calls	the	conflict	handler.	On	read.	All	the	conflicting
writes	are	stored.	On	read,	multiple	versions	of	the	data	are	returned	to	the	application.	The	application	may	prompt	the	user	or	automatically	resolve	the	conflict.	CouchDB	works	this	way.	Multi-leader	replication	topologies	A	replication	topology	describes	the	communication	paths	along	which	writes	are	propagated	from	one	node	to	another.	The
most	general	topology	is	all-to-all	in	which	every	leader	sends	its	writes	to	every	other	leader.	MySQL	uses	circular	topology,	where	each	nodes	receives	writes	from	one	node	and	forwards	those	writes	to	another	node.	Another	popular	topology	has	the	shape	of	a	star,	one	designated	node	forwards	writes	to	all	of	the	other	nodes.	In	circular	and	star
topologies	a	write	might	need	to	pass	through	multiple	nodes	before	they	reach	all	replicas.	To	prevent	infinite	replication	loops	each	node	is	given	a	unique	identifier	and	the	replication	log	tags	each	write	with	the	identifiers	of	the	nodes	it	has	passed	through.	When	a	node	fails	it	can	interrupt	the	flow	of	replication	messages.	In	all-to-all	topology
fault	tolerance	is	better	as	messages	can	travel	along	different	paths	avoiding	a	single	point	of	failure.	It	has	some	issues	too,	some	network	links	may	be	faster	than	others	and	some	replication	messages	may	"overtake"	others.	To	order	events	correctly.	there	is	a	technique	called	version	vectors.	PostgresSQL	BDR	does	not	provide	casual	ordering	of
writes,	and	Tungsten	Replicator	for	MySQL	doesn't	even	try	to	detect	conflicts.	Leaderless	replication	Simply	put,	any	replica	can	directly	accept	writes	from	clients.	Databases	like	look	like	Amazon's	in-house	Dynamo	datastore.	Riak,	Cassandra	and	Voldemort	follow	the	Dynamo	style.	In	a	leaderless	configuration,	failover	does	not	exist.	Clients	send
the	write	to	all	replicas	in	parallel.	Read	requests	are	also	sent	to	several	nodes	in	parallel.	The	client	may	get	different	responses.	Version	numbers	are	used	to	determine	which	value	is	newer.	Eventually,	all	the	data	is	copied	to	every	replica.	After	a	unavailable	node	come	back	online,	it	has	two	different	mechanisms	to	catch	up:	Read	repair.	When
a	client	detect	any	stale	responses,	write	the	newer	value	back	to	that	replica.	Anti-entropy	process.	There	is	a	background	process	that	constantly	looks	for	differences	in	data	between	replicas	and	copies	any	missing	data	from	one	replica	to	he	other.	It	does	not	copy	writes	in	any	particular	order.	Quorums	for	reading	and	writing	If	there	are	n
replicas,	every	write	must	be	confirmed	by	w	nodes	to	be	considered	successful,	and	we	must	query	at	least	r	nodes	for	each	read.	As	long	as	w	+	r	>	n,	we	expect	to	get	an	up-to-date	value	when	reading.	r	and	w	values	are	called	quorum	reads	and	writes.	Are	the	minimum	number	of	votes	required	for	the	read	or	write	to	be	valid.	A	common	choice
is	to	make	n	and	odd	number	(typically	3	or	5)	and	to	set	w	=	r	=	(n	+	1)/2	(rounded	up).	Limitations:	Sloppy	quorum,	the	w	writes	may	end	up	on	different	nodes	than	the	r	reads,	so	there	is	no	longer	a	guaranteed	overlap.	If	two	writes	occur	concurrently,	and	is	not	clear	which	one	happened	first,	the	only	safe	solution	is	to	merge	them.	Writes	can
be	lost	due	to	clock	skew.	If	a	write	happens	concurrently	with	a	read,	the	write	may	be	reflected	on	only	some	of	the	replicas.	If	a	write	succeeded	on	some	replicas	but	failed	on	others,	it	is	not	rolled	back	on	the	replicas	where	it	succeeded.	Reads	may	or	may	not	return	the	value	from	that	write.	If	a	node	carrying	a	new	value	fails,	and	its	data	is
restored	from	a	replica	carrying	an	old	value,	the	number	of	replicas	storing	the	new	value	may	break	the	quorum	condition.	Dynamo-style	databases	are	generally	optimised	for	use	cases	that	can	tolerate	eventual	consistency.	Sloppy	quorums	and	hinted	handoff	Leaderless	replication	may	be	appealing	for	use	cases	that	require	high	availability	and
low	latency,	and	that	can	tolerate	occasional	stale	reads.	It's	likely	that	the	client	won't	be	able	to	connect	to	some	database	nodes	during	a	network	interruption.	Is	it	better	to	return	errors	to	all	requests	for	which	we	cannot	reach	quorum	of	w	or	r	nodes?	Or	should	we	accept	writes	anyway,	and	write	them	to	some	nodes	that	are	reachable	but
aren't	among	the	n	nodes	on	which	the	value	usually	lives?	The	latter	is	known	as	sloppy	quorum:	writes	and	reads	still	require	w	and	r	successful	responses,	but	those	may	include	nodes	that	are	not	among	the	designated	n	"home"	nodes	for	a	value.	Once	the	network	interruption	is	fixed,	any	writes	are	sent	to	the	appropriate	"home"	nodes	(hinted
handoff).	Sloppy	quorums	are	useful	for	increasing	write	availability:	as	long	as	any	w	nodes	are	available,	the	database	can	accept	writes.	This	also	means	that	you	cannot	be	sure	to	read	the	latest	value	for	a	key,	because	it	may	have	been	temporarily	written	to	some	nodes	outside	of	n.	Multi-datacenter	operation	Each	write	from	a	client	is	sent	to

all	replicas,	regardless	of	datacenter,	but	the	client	usually	only	waits	for	acknowledgement	from	a	quorum	of	nodes	within	its	local	datacenter	so	that	it	is	unaffected	by	delays	and	interruptions	on	cross-datacenter	link.	Detecting	concurrent	writes	In	order	to	become	eventually	consistent,	the	replicas	should	converge	toward	the	same	value.	If	you
want	to	avoid	losing	data,	you	application	developer,	need	to	know	a	lot	about	the	internals	of	your	database's	conflict	handling.	Last	write	wins	(discarding	concurrent	writes).	Even	though	the	writes	don'	have	a	natural	ordering,	we	can	force	an	arbitrary	order	on	them.	We	can	attach	a	timestamp	to	each	write	and	pick	the	most	recent.	There	are
some	situations	such	caching	on	which	lost	writes	are	acceptable.	If	losing	data	is	not	acceptable,	LWW	is	a	poor	choice	for	conflict	resolution.	The	"happens-before"	relationship	and	concurrency.	Whether	one	operation	happens	before	another	operation	is	the	key	to	defining	what	concurrency	means.	We	can	simply	say	that	to	operations	are
concurrent	if	neither	happens	before	the	other.	Either	A	happened	before	B,	or	B	happened	before	A,	or	A	and	B	are	concurrent.	Capturing	the	happens-before	relationship	The	server	can	determine	whether	two	operations	are	concurrent	by	looking	at	the	version	numbers.	The	server	maintains	a	version	number	for	every	key,	increments	the	version
number	every	time	that	key	is	written,	and	stores	the	new	version	number	along	the	value	written.	Client	reads	a	key,	the	server	returns	all	values	that	have	not	been	overwrite,	as	well	as	the	latest	version	number.	A	client	must	read	a	key	before	writing.	Client	writes	a	key,	it	must	include	the	version	number	from	the	prior	read,	and	it	must	merge
together	all	values	that	it	received	in	the	prior	read.	Server	receives	a	write	with	a	particular	version	number,	it	can	overwrite	all	values	with	that	version	number	or	below,	but	it	must	keep	all	values	with	a	higher	version	number.	Merging	concurrently	written	values	No	data	is	silently	dropped.	It	requires	clients	do	some	extra	work,	they	have	to
clean	up	afterward	by	merging	the	concurrently	written	values.	Riak	calls	these	concurrent	values	siblings.	Merging	sibling	values	is	the	same	problem	as	conflict	resolution	in	multi-leader	replication.	A	simple	approach	is	to	just	pick	one	of	the	values	on	a	version	number	or	timestamp	(last	write	wins).	You	may	need	to	do	something	more	intelligent
in	application	code	to	avoid	losing	data.	If	you	want	to	allow	people	to	remove	things,	union	of	siblings	may	not	yield	the	right	result.	An	item	cannot	simply	be	deleted	from	the	database	when	it	is	removed,	the	system	must	leave	a	marker	with	an	appropriate	version	number	to	indicate	that	the	item	has	been	removed	when	merging	siblings
(tombstone).	Merging	siblings	in	application	code	is	complex	and	error-prone,	there	are	efforts	to	design	data	structures	that	can	perform	this	merging	automatically	(CRDTs).	Version	vectors	We	need	a	version	number	per	replica	as	well	as	per	key.	Each	replica	increments	its	own	version	number	when	processing	a	write,	and	also	keeps	track	of	the
version	numbers	it	has	seen	from	each	of	the	other	replicas.	The	collection	of	version	numbers	from	all	the	replicas	is	called	a	version	vector.	Version	vector	are	sent	from	the	database	replicas	to	clients	when	values	are	read,	and	need	to	be	sent	back	to	the	database	when	a	value	is	subsequently	written.	Riak	calls	this	casual	context.	Version	vectors
allow	the	database	to	distinguish	between	overwrites	and	concurrent	writes.	Partitioning	Replication,	for	very	large	datasets	or	very	high	query	throughput	is	not	sufficient,	we	need	to	break	the	data	up	into	partitions	(sharding).	Basically,	each	partition	is	a	small	database	of	its	own.	The	main	reason	for	wanting	to	partition	data	is	scalability,	query
load	can	be	load	cabe	distributed	across	many	processors.	Throughput	can	be	scaled	by	adding	more	nodes.	Partitioning	and	replication	Each	record	belongs	to	exactly	one	partition,	it	may	still	be	stored	on	several	nodes	for	fault	tolerance.	A	node	may	store	more	than	one	partition.	Partition	of	key-value	data	Our	goal	with	partitioning	is	to	spread	the
data	and	the	query	load	evenly	across	nodes.	If	partition	is	unfair,	we	call	it	skewed.	It	makes	partitioning	much	less	effective.	A	partition	with	disproportionately	high	load	is	called	a	hot	spot.	The	simplest	approach	is	to	assign	records	to	nodes	randomly.	The	main	disadvantage	is	that	if	you	are	trying	to	read	a	particular	item,	you	have	no	way	of
knowing	which	node	it	is	on,	so	you	have	to	query	all	nodes	in	parallel.	Partition	by	key	range	Assign	a	continuous	range	of	keys,	like	the	volumes	of	a	paper	encyclopaedia.	Boundaries	might	be	chose	manually	by	an	administrator,	or	the	database	can	choose	them	automatically.	On	each	partition,	keys	are	in	sorted	order	so	scans	are	easy.	The
downside	is	that	certain	access	patterns	can	lead	to	hot	spots.	Partitioning	by	hash	of	key	A	good	hash	function	takes	skewed	data	and	makes	it	uniformly	distributed.	There	is	no	need	to	be	cryptographically	strong	(MongoDB	uses	MD5	and	Cassandra	uses	Murmur3).	You	can	assign	each	partition	a	range	of	hashes.	The	boundaries	can	be	evenly
spaced	or	they	can	be	chosen	pseudorandomly	(consistent	hashing).	Unfortunately	we	lose	the	ability	to	do	efficient	range	queries.	Keys	that	were	once	adjacent	are	now	scattered	across	all	the	partitions.	Any	range	query	has	to	be	sent	to	all	partitions.	Skewed	workloads	and	relieving	hot	spots	You	can't	avoid	hot	spots	entirely.	For	example,	you	may
end	up	with	large	volume	of	writes	to	the	same	key.	It's	the	responsibility	of	the	application	to	reduce	the	skew.	A	simple	technique	is	to	add	a	random	number	to	the	beginning	or	end	of	the	key.	Splitting	writes	across	different	keys,	makes	reads	now	to	do	some	extra	work	and	combine	them.	Partitioning	and	secondary	indexes	The	situation	gets
more	complicated	if	secondary	indexes	are	involved.	A	secondary	index	usually	doesn't	identify	the	record	uniquely.	They	don't	map	neatly	to	partitions.	Partitioning	secondary	indexes	by	document	Each	partition	maintains	its	secondary	indexes,	covering	only	the	documents	in	that	partition	(local	index).	You	need	to	send	the	query	to	all	partitions,
and	combine	all	the	results	you	get	back	(scatter/gather).	This	is	prone	to	tail	latency	amplification	and	is	widely	used	in	MongoDB,	Riak,	Cassandra,	Elasticsearch,	SolrCloud	and	VoltDB.	Partitioning	secondary	indexes	by	term	We	construct	a	global	index	that	covers	data	in	all	partitions.	The	global	index	must	also	be	partitioned	so	it	doesn't	become
the	bottleneck.	It	is	called	the	term-partitioned	because	the	term	we're	looking	for	determines	the	partition	of	the	index.	Partitioning	by	term	can	be	useful	for	range	scans,	whereas	partitioning	on	a	hash	of	the	term	gives	a	more	even	distribution	load.	The	advantage	is	that	it	can	make	reads	more	efficient:	rather	than	doing	scatter/gather	over	all
partitions,	a	client	only	needs	to	make	a	request	to	the	partition	containing	the	term	that	it	wants.	The	downside	of	a	global	index	is	that	writes	are	slower	and	complicated.	Rebalancing	partitions	The	process	of	moving	load	from	one	node	in	the	cluster	to	another.	Strategies	for	rebalancing:	How	not	to	do	it:	Hash	mod	n.	The	problem	with	mod	N	is
that	if	the	number	of	nodes	N	changes,	most	of	the	keys	will	need	to	be	moved	from	one	node	to	another.	Fixed	number	of	partitions.	Create	many	more	partitions	than	there	are	nodes	and	assign	several	partitions	to	each	node.	If	a	node	is	added	to	the	cluster,	we	can	steal	a	few	partitions	from	every	existing	node	until	partitions	are	fairly	distributed
once	again.	The	number	of	partitions	does	not	change,	nor	does	the	assignment	of	keys	to	partitions.	The	only	thing	that	change	is	the	assignment	of	partitions	to	nodes.	This	is	used	in	Riak,	Elasticsearch,	Couchbase,	and	Voldemport.	You	need	to	choose	a	high	enough	number	of	partitions	to	accomodate	future	growth.	Neither	too	big	or	too	small.
Dynamic	partitioning.	The	number	of	partitions	adapts	to	the	total	data	volume.	An	empty	database	starts	with	an	empty	partition.	While	the	dataset	is	small,	all	writes	have	to	processed	by	a	single	node	while	the	others	nodes	sit	idle.	HBase	and	MongoDB	allow	an	initial	set	of	partitions	to	be	configured	(pre-splitting).	Partitioning	proportionally	to
nodes.	Cassandra	and	Ketama	make	the	number	of	partitions	proportional	to	the	number	of	nodes.	Have	a	fixed	number	of	partitions	per	node.	This	approach	also	keeps	the	size	of	each	partition	fairly	stable.	Automatic	versus	manual	rebalancing	Fully	automated	rebalancing	may	seem	convenient	but	the	process	can	overload	the	network	or	the	nodes
and	harm	the	performance	of	other	requests	while	the	rebalancing	is	in	progress.	It	can	be	good	to	have	a	human	in	the	loop	for	rebalancing.	You	may	avoid	operational	surprises.	Request	routing	This	problem	is	also	called	service	discovery.	There	are	different	approaches:	Allow	clients	to	contact	any	node	and	make	them	handle	the	request	directly,
or	forward	the	request	to	the	appropriate	node.	Send	all	requests	from	clients	to	a	routing	tier	first	that	acts	as	a	partition-aware	load	balancer.	Make	clients	aware	of	the	partitioning	and	the	assignment	of	partitions	to	nodes.	In	many	cases	the	problem	is:	how	does	the	component	making	the	routing	decision	learn	about	changes	in	the	assignment	of
partitions	to	nodes?	Many	distributed	data	systems	rely	on	a	separate	coordination	service	such	as	ZooKeeper	to	keep	track	of	this	cluster	metadata.	Each	node	registers	itself	in	ZooKeeper,	and	ZooKeeper	maintains	the	authoritative	mapping	of	partitions	to	nodes.	The	routing	tier	or	the	partitioning-aware	client,	can	subscribe	to	this	information	in
ZooKeeper.	HBase,	SolrCloud	and	Kafka	use	ZooKeeper	to	track	partition	assignment.	MongoDB	relies	on	its	own	config	server.	Cassandra	and	Riak	take	a	different	approach:	they	use	a	gossip	protocol.	Parallel	query	execution	Massively	parallel	processing	(MPP)	relational	database	products	are	much	more	sophisticated	in	the	types	of	queries	they
support.	Transactions	Implementing	fault-tolerant	mechanisms	is	a	lot	of	work.	The	slippery	concept	of	a	transaction	Transactions	have	been	the	mechanism	of	choice	for	simplifying	these	issues.	Conceptually,	all	the	reads	and	writes	in	a	transaction	are	executed	as	one	operation:	either	the	entire	transaction	succeeds	(commit)	or	it	fails	(abort,
rollback).	The	application	is	free	to	ignore	certain	potential	error	scenarios	and	concurrency	issues	(safety	guarantees).	ACID	Atomicity.	Is	not	about	concurrency.	It	is	what	happens	if	a	client	wants	to	make	several	writes,	but	a	fault	occurs	after	some	of	the	writes	have	been	processed.	Abortability	would	have	been	a	better	term	than	atomicity.
Consistency.	Invariants	on	your	data	must	always	be	true.	The	idea	of	consistency	depends	on	the	application's	notion	of	invariants.	Atomicity,	isolation,	and	durability	are	properties	of	the	database,	whereas	consistency	(in	an	ACID	sense)	is	a	property	of	the	application.	Isolation.	Concurrently	executing	transactions	are	isolated	from	each	other.	It's
also	called	serializability,	each	transaction	can	pretend	that	it	is	the	only	transaction	running	on	the	entire	database,	and	the	result	is	the	same	as	if	they	had	run	serially	(one	after	the	other).	Durability.	Once	a	transaction	has	committed	successfully,	any	data	it	has	written	will	not	be	forgotten,	even	if	there	is	a	hardware	fault	or	the	database
crashes.	In	a	single-node	database	this	means	the	data	has	been	written	to	nonvolatile	storage.	In	a	replicated	database	it	means	the	data	has	been	successfully	copied	to	some	number	of	nodes.	Atomicity	can	be	implemented	using	a	log	for	crash	recovery,	and	isolation	can	be	implemented	using	a	lock	on	each	object,	allowing	only	one	thread	to
access	an	object	at	any	one	time.	A	transaction	is	a	mechanism	for	grouping	multiple	operations	on	multiple	objects	into	one	unit	of	execution.	Handling	errors	and	aborts	A	key	feature	of	a	transaction	is	that	it	can	be	aborted	and	safely	retried	if	an	error	occurred.	In	datastores	with	leaderless	replication	is	the	application's	responsibility	to	recover
from	errors.	The	whole	point	of	aborts	is	to	enable	safe	retries.	Weak	isolation	levels	Concurrency	issues	(race	conditions)	come	into	play	when	one	transaction	reads	data	that	is	concurrently	modified	by	another	transaction,	or	when	two	transactions	try	to	simultaneously	modify	the	same	data.	Databases	have	long	tried	to	hide	concurrency	issues	by
providing	transaction	isolation.	In	practice,	is	not	that	simple.	Serializable	isolation	has	a	performance	cost.	It's	common	for	systems	to	use	weaker	levels	of	isolation,	which	protect	against	some	concurrency	issues,	but	not	all.	Weak	isolation	levels	used	in	practice:	Read	committed	It	makes	two	guarantees:	When	reading	from	the	database,	you	will
only	see	data	that	has	been	committed	(no	dirty	reads).	Writes	by	a	transaction	only	become	visible	to	others	when	that	transaction	commits.	When	writing	to	the	database,	you	will	only	overwrite	data	that	has	been	committed	(no	dirty	writes).	Dirty	writes	are	prevented	usually	by	delaying	the	second	write	until	the	first	write's	transaction	has
committed	or	aborted.	Most	databases	prevent	dirty	writes	by	using	row-level	locks	that	hold	the	lock	until	the	transaction	is	committed	or	aborted.	Only	one	transaction	can	hold	the	lock	for	any	given	object.	On	dirty	reads,	requiring	read	locks	does	not	work	well	in	practice	as	one	long-running	write	transaction	can	force	many	read-only	transactions
to	wait.	For	every	object	that	is	written,	the	database	remembers	both	the	old	committed	value	and	the	new	value	set	by	the	transaction	that	currently	holds	the	write	lock.	While	the	transaction	is	ongoing,	any	other	transactions	that	read	the	object	are	simply	given	the	old	value.	Snapshot	isolation	and	repeatable	read	There	are	still	plenty	of	ways	in
which	you	can	have	concurrency	bugs	when	using	this	isolation	level.	Nonrepeatable	read	or	read	skew,	when	you	read	at	the	same	time	you	committed	a	change	you	may	see	temporal	and	inconsistent	results.	There	are	some	situations	that	cannot	tolerate	such	temporal	inconsistencies:	Backups.	During	the	time	that	the	backup	process	is	running,
writes	will	continue	to	be	made	to	the	database.	If	you	need	to	restore	from	such	a	backup,	inconsistencies	can	become	permanent.	Analytic	queries	and	integrity	checks.	You	may	get	nonsensical	results	if	they	observe	parts	of	the	database	at	different	points	in	time.	Snapshot	isolation	is	the	most	common	solution.	Each	transaction	reads	from	a
consistent	snapshot	of	the	database.	The	implementation	of	snapshots	typically	use	write	locks	to	prevent	dirty	writes.	The	database	must	potentially	keep	several	different	committed	versions	of	an	object	(multi-version	concurrency	control	or	MVCC).	Read	committed	uses	a	separate	snapshot	for	each	query,	while	snapshot	isolation	uses	the	same
snapshot	for	an	entire	transaction.	How	do	indexes	work	in	a	multi-version	database?	One	option	is	to	have	the	index	simply	point	to	all	versions	of	an	object	and	require	an	index	query	to	filter	out	any	object	versions	that	are	not	visible	to	the	current	transaction.	Snapshot	isolation	is	called	serializable	in	Oracle,	and	repeatable	read	in	PostgreSQL
and	MySQL.	Preventing	lost	updates	This	might	happen	if	an	application	reads	some	value	from	the	database,	modifies	it,	and	writes	it	back.	If	two	transactions	do	this	concurrently,	one	of	the	modifications	can	be	lost	(later	write	clobbers	the	earlier	write).	Atomic	write	operations	A	solution	for	this	it	to	avoid	the	need	to	implement	read-modify-write
cycles	and	provide	atomic	operations	such	us	UPDATE	counters	SET	value	=	value	+	1	WHERE	key	=	'foo';	MongoDB	provides	atomic	operations	for	making	local	modifications,	and	Redis	provides	atomic	operations	for	modifying	data	structures.	Explicit	locking	The	application	explicitly	lock	objects	that	are	going	to	be	updated.	Automatically
detecting	lost	updates	Allow	them	to	execute	in	parallel,	if	the	transaction	manager	detects	a	lost	update,	abort	the	transaction	and	force	it	to	retry	its	read-modify-write	cycle.	MySQL/InnoDB's	repeatable	read	does	not	detect	lost	updates.	Compare-and-set	If	the	current	value	does	not	match	with	what	you	previously	read,	the	update	has	no	effect.
UPDATE	wiki_pages	SET	content	=	'new	content'	WHERE	id	=	1234	AND	content	=	'old	content';	Conflict	resolution	and	replication	With	multi-leader	or	leaderless	replication,	compare-and-set	do	not	apply.	A	common	approach	in	replicated	databases	is	to	allow	concurrent	writes	to	create	several	conflicting	versions	of	a	value	(also	know	as
siblings),	and	to	use	application	code	or	special	data	structures	to	resolve	and	merge	these	versions	after	the	fact.	Write	skew	and	phantoms	Imagine	Alice	and	Bob	are	two	on-call	doctors	for	a	particular	shift.	Imagine	both	the	request	to	leave	because	they	are	feeling	unwell.	Unfortunately	they	happen	to	click	the	button	to	go	off	call	at
approximately	the	same	time.	ALICE	BOB	┌─	BEGIN	TRANSACTION	┌─	BEGIN	TRANSACTION	│	│	├─	currently_on_call	=	(├─	currently_on_call	=	(│	select	count(*)	from	doctors	│	select	count(*)	from	doctors	│	where	on_call	=	true	│	where	on_call	=	true	│	and	shift_id	=	1234	│	and	shift_id	=	1234	│)	│)	│	//	now	currently_on_call	=	2	│	//	now
currently_on_call	=	2	│	│	├─	if	(currently_on_call	2)	{	│	│	update	doctors	│	│	set	on_call	=	false	│	│	where	name	=	'Alice'	│	│	and	shift_id	=	1234	├─	if	(currently_on_call	>=	2)	{	│	}	│	update	doctors	│	│	set	on_call	=	false	└─	COMMIT	TRANSACTION	│	where	name	=	'Bob'	│	and	shift_id	=	1234	│	}	│	└─	COMMIT	TRANSACTION	Since	database	is	using
snapshot	isolation,	both	checks	return	2.	Both	transactions	commit,	and	now	no	doctor	is	on	call.	The	requirement	of	having	at	least	one	doctor	has	been	violated.	Write	skew	can	occur	if	two	transactions	read	the	same	objects,	and	then	update	some	of	those	objects.	You	get	a	dirty	write	or	lost	update	anomaly.	Ways	to	prevent	write	skew	are	a	bit
more	restricted:	Atomic	operations	don't	help	as	things	involve	more	objects.	Automatically	prevent	write	skew	requires	true	serializable	isolation.	The	second-best	option	in	this	case	is	probably	to	explicitly	lock	the	rows	that	the	transaction	depends	on.	BEGIN	TRANSACTION;	SELECT	*	FROM	doctors	WHERE	on_call	=	true	AND	shift_id	=	1234
FOR	UPDATE;	UPDATE	doctors	SET	on_call	=	false	WHERE	name	=	'Alice'	AND	shift_id	=	1234;	COMMIT;	Serializability	This	is	the	strongest	isolation	level.	It	guarantees	that	even	though	transactions	may	execute	in	parallel,	the	end	result	is	the	same	as	if	they	had	executed	one	at	a	time,	serially,	without	concurrency.	Basically,	the	database
prevents	all	possible	race	conditions.	There	are	three	techniques	for	achieving	this:	Executing	transactions	in	serial	order	Two-phase	locking	Serializable	snapshot	isolation.	Actual	serial	execution	The	simplest	way	of	removing	concurrency	problems	is	to	remove	concurrency	entirely	and	execute	only	one	transaction	at	a	time,	in	serial	order,	on	a
single	thread.	This	approach	is	implemented	by	VoltDB/H-Store,	Redis	and	Datomic.	Encapsulating	transactions	in	stored	procedures	With	interactive	style	of	transaction,	a	lot	of	time	is	spent	in	network	communication	between	the	application	and	the	database.	For	this	reason,	systems	with	single-threaded	serial	transaction	processing	don't	allow
interactive	multi-statement	transactions.	The	application	must	submit	the	entire	transaction	code	to	the	database	ahead	of	time,	as	a	stored	procedure,	so	all	the	data	required	by	the	transaction	is	in	memory	and	the	procedure	can	execute	very	fast.	There	are	a	few	pros	and	cons	for	stored	procedures:	Each	database	vendor	has	its	own	language	for
stored	procedures.	They	usually	look	quite	ugly	and	archaic	from	today's	point	of	view,	and	they	lack	the	ecosystem	of	libraries.	It's	harder	to	debug,	more	awkward	to	keep	in	version	control	and	deploy,	trickier	to	test,	and	difficult	to	integrate	with	monitoring.	Modern	implementations	of	stored	procedures	include	general-purpose	programming
languages	instead:	VoltDB	uses	Java	or	Groovy,	Datomic	uses	Java	or	Clojure,	and	Redis	uses	Lua.	Partitioning	Executing	all	transactions	serially	limits	the	transaction	throughput	to	the	speed	of	a	single	CPU.	In	order	to	scale	to	multiple	CPU	cores	you	can	potentially	partition	your	data	and	each	partition	can	have	its	own	transaction	processing
thread.	You	can	give	each	CPU	core	its	own	partition.	For	any	transaction	that	needs	to	access	multiple	partitions,	the	database	must	coordinate	the	transaction	across	all	the	partitions.	They	will	be	vastly	slower	than	single-partition	transactions.	Two-phase	locking	(2PL)	Two-phase	locking	(2PL)	sounds	similar	to	two-phase	commit	(2PC)	but	be
aware	that	they	are	completely	different	things.	Several	transactions	are	allowed	to	concurrently	read	the	same	object	as	long	as	nobody	is	writing	it.	When	somebody	wants	to	write	(modify	or	delete)	an	object,	exclusive	access	is	required.	Writers	don't	just	block	other	writers;	they	also	block	readers	and	vice	versa.	It	protects	against	all	the	race
conditions	discussed	earlier.	Blocking	readers	and	writers	is	implemented	by	a	having	lock	on	each	object	in	the	database.	The	lock	is	used	as	follows:	if	a	transaction	want	sot	read	an	object,	it	must	first	acquire	a	lock	in	shared	mode.	If	a	transaction	wants	to	write	to	an	object,	it	must	first	acquire	the	lock	in	exclusive	mode.	If	a	transaction	first
reads	and	then	writes	an	object,	it	may	upgrade	its	shared	lock	to	an	exclusive	lock.	After	a	transaction	has	acquired	the	lock,	it	must	continue	to	hold	the	lock	until	the	end	of	the	transaction	(commit	or	abort).	First	phase	is	when	the	locks	are	acquired,	second	phase	is	when	all	the	locks	are	released.	It	can	happen	that	transaction	A	is	stuck	waiting
for	transaction	B	to	release	its	lock,	and	vice	versa	(deadlock).	The	performance	for	transaction	throughput	and	response	time	of	queries	are	significantly	worse	under	two-phase	locking	than	under	weak	isolation.	A	transaction	may	have	to	wait	for	several	others	to	complete	before	it	can	do	anything.	Databases	running	2PL	can	have	unstable
latencies,	and	they	can	be	very	slow	at	high	percentiles.	One	slow	transaction,	or	one	transaction	that	accesses	a	lot	of	data	and	acquires	many	locks	can	cause	the	rest	of	the	system	to	halt.	Predicate	locks	With	phantoms,	one	transaction	may	change	the	results	of	another	transaction's	search	query.	In	order	to	prevent	phantoms,	we	need	a	predicate
lock.	Rather	than	a	lock	belonging	to	a	particular	object,	it	belongs	to	all	objects	that	match	some	search	condition.	Predicate	locks	applies	even	to	objects	that	do	not	yet	exist	in	the	database,	but	which	might	be	added	in	the	future	(phantoms).	Index-range	locks	Predicate	locks	do	not	perform	well.	Checking	for	matching	locks	becomes	time-
consuming	and	for	that	reason	most	databases	implement	index-range	locking.	It's	safe	to	simplify	a	predicate	by	making	it	match	a	greater	set	of	objects.	These	locks	are	not	as	precise	as	predicate	locks	would	be,	but	since	they	have	much	lower	overheads,	they	are	a	good	compromise.	Serializable	snapshot	isolation	(SSI)	It	provides	full
serializability	and	has	a	small	performance	penalty	compared	to	snapshot	isolation.	SSI	is	fairly	new	and	might	become	the	new	default	in	the	future.	Pesimistic	versus	optimistic	concurrency	control	Two-phase	locking	is	called	pessimistic	concurrency	control	because	if	anything	might	possibly	go	wrong,	it's	better	to	wait.	Serial	execution	is	also
pessimistic	as	is	equivalent	to	each	transaction	having	an	exclusive	lock	on	the	entire	database.	Serializable	snapshot	isolation	is	optimistic	concurrency	control	technique.	Instead	of	blocking	if	something	potentially	dangerous	happens,	transactions	continue	anyway,	in	the	hope	that	everything	will	turn	out	all	right.	The	database	is	responsible	for
checking	whether	anything	bad	happened.	If	so,	the	transaction	is	aborted	and	has	to	be	retried.	If	there	is	enough	spare	capacity,	and	if	contention	between	transactions	is	not	too	high,	optimistic	concurrency	control	techniques	tend	to	perform	better	than	pessimistic	ones.	SSI	is	based	on	snapshot	isolation,	reads	within	a	transaction	are	made	from
a	consistent	snapshot	of	the	database.	On	top	of	snapshot	isolation,	SSI	adds	an	algorithm	for	detecting	serialization	conflicts	among	writes	and	determining	which	transactions	to	abort.	The	database	knows	which	transactions	may	have	acted	on	an	outdated	premise	and	need	to	be	aborted	by:	Detecting	reads	of	a	stale	MVCC	object	version.	The
database	needs	to	track	when	a	transaction	ignores	another	transaction's	writes	due	to	MVCC	visibility	rules.	When	a	transaction	wants	to	commit,	the	database	checks	whether	any	of	the	ignored	writes	have	now	been	committed.	If	so,	the	transaction	must	be	aborted.	Detecting	writes	that	affect	prior	reads.	As	with	two-phase	locking,	SSI	uses
index-range	locks	except	that	it	does	not	block	other	transactions.	When	a	transaction	writes	to	the	database,	it	must	look	in	the	indexes	for	any	other	transactions	that	have	recently	read	the	affected	data.	It	simply	notifies	the	transactions	that	the	data	they	read	may	no	longer	be	up	to	date.	Performance	of	serializable	snapshot	isolation	Compared	to
two-phase	locking,	the	big	advantage	of	SSI	is	that	one	transaction	doesn't	need	to	block	waiting	for	locks	held	by	another	transaction.	Writers	don't	block	readers,	and	vice	versa.	Compared	to	serial	execution,	SSI	is	not	limited	to	the	throughput	of	a	single	CPU	core.	Transactions	can	read	and	write	data	in	multiple	partitions	while	ensuring
serializable	isolation.	The	rate	of	aborts	significantly	affects	the	overall	performance	of	SSI.	SSI	requires	that	read-write	transactions	be	fairly	short	(long-running	read-only	transactions	may	be	okay).	The	trouble	with	distributed	systems	Faults	and	partial	failures	A	program	on	a	single	computer	either	works	or	it	doesn't.	There	is	no	reason	why
software	should	be	flaky	(non	deterministic).	In	a	distributed	systems	we	have	no	choice	but	to	confront	the	messy	reality	of	the	physical	world.	There	will	be	parts	that	are	broken	in	an	unpredictable	way,	while	others	work.	Partial	failures	are	nondeterministic.	Things	will	unpredicably	fail.	We	need	to	accept	the	possibility	of	partial	failure	and	build
fault-tolerant	mechanism	into	the	software.	We	need	to	build	a	reliable	system	from	unreliable	components.	Unreliable	networks	Focusing	on	shared-nothing	systems	the	network	is	the	only	way	machines	communicate.	The	internet	and	most	internal	networks	are	asynchronous	packet	networks.	A	message	is	sent	and	the	network	gives	no	guarantees
as	to	when	it	will	arrive,	or	whether	it	will	arrive	at	all.	Things	that	could	go	wrong:	Request	lost	Request	waiting	in	a	queue	to	be	delivered	later	Remote	node	may	have	failed	Remote	node	may	have	temporarily	stoped	responding	Response	has	been	lost	on	the	network	The	response	has	been	delayed	and	will	be	delivered	later	If	you	send	a	request
to	another	node	and	don't	receive	a	response,	it	is	impossible	to	tell	why.	The	usual	way	of	handling	this	issue	is	a	timeout:	after	some	time	you	give	up	waiting	and	assume	that	the	response	is	not	going	to	arrive.	Nobody	is	immune	to	network	problems.	You	do	need	to	know	how	your	software	reacts	to	network	problems	to	ensure	that	the	system	can
recover	from	them.	It	may	make	sense	to	deliberately	trigger	network	problems	and	test	the	system's	response.	If	you	want	to	be	sure	that	a	request	was	successful,	you	need	a	positive	response	from	the	application	itself.	If	something	has	gone	wrong,	you	have	to	assume	that	you	will	get	no	response	at	all.	Timeouts	and	unbounded	delays	A	long
timeout	means	a	long	wait	until	a	node	is	declared	dead.	A	short	timeout	detects	faults	faster,	but	carries	a	higher	risk	of	incorrectly	declaring	a	node	dead	(when	it	could	be	a	slowdown).	Premature	declaring	a	node	is	problematic,	if	the	node	is	actually	alive	the	action	may	end	up	being	performed	twice.	When	a	node	is	declared	dead,	its
responsibilities	need	to	be	transferred	to	other	nodes,	which	places	additional	load	on	other	nodes	and	the	network.	Network	congestion	and	queueing	Different	nodes	try	to	send	packets	simultaneously	to	the	same	destination,	the	network	switch	must	queue	them	and	feed	them	to	the	destination	one	by	one.	The	switch	will	discard	packets	when
filled	up.	If	CPU	cores	are	busy,	the	request	is	queued	by	the	operative	system,	until	applications	are	ready	to	handle	it.	In	virtual	environments,	the	operative	system	is	often	paused	while	another	virtual	machine	uses	a	CPU	core.	The	VM	queues	the	incoming	data.	TCP	performs	flow	control,	in	which	a	node	limits	its	own	rate	of	sending	in	order	to
avoid	overloading	a	network	link	or	the	receiving	node.	This	means	additional	queuing	at	the	sender.	You	can	choose	timeouts	experimentally	by	measuring	the	distribution	of	network	round-trip	times	over	an	extended	period.	Systems	can	continually	measure	response	times	and	their	variability	(jitter),	and	automatically	adjust	timeouts	according	to
the	observed	response	time	distribution.	Synchronous	vs	ashynchronous	networks	A	telephone	network	estabilishes	a	circuit,	we	say	is	synchronous	even	as	the	data	passes	through	several	routers	as	it	does	not	suffer	from	queing.	The	maximum	end-to-end	latency	of	the	network	is	fixed	(bounded	delay).	A	circuit	is	a	fixed	amount	of	reserved
bandwidth	which	nobody	else	can	use	while	the	circuit	is	established,	whereas	packets	of	a	TCP	connection	opportunistically	use	whatever	network	bandwidth	is	available.	Using	circuits	for	bursty	data	transfers	wastes	network	capacity	and	makes	transfer	unnecessary	slow.	By	contrast,	TCP	dinamycally	adapts	the	rate	of	data	transfer	to	the
available	network	capacity.	We	have	to	assume	that	network	congestion,	queueing,	and	unbounded	delays	will	happen.	Consequently,	there's	no	"correct"	value	for	timeouts,	they	need	to	be	determined	experimentally.	Unreliable	clocks	The	time	when	a	message	is	received	is	always	later	than	the	time	when	it	is	sent,	we	don't	know	how	much	later
due	to	network	delays.	This	makes	difficult	to	determine	the	order	of	which	things	happened	when	multiple	machines	are	involved.	Each	machine	on	the	network	has	its	own	clock,	slightly	faster	or	slower	than	the	other	machines.	It	is	possible	to	synchronise	clocks	with	Network	Time	Protocol	(NTP).	Time-of-day	clocks.	Return	the	current	date	and
time	according	to	some	calendar	(wall-clock	time).	If	the	local	clock	is	toof	ar	ahead	of	the	NTP	server,	it	may	be	forcibly	reset	and	appear	to	jump	back	to	a	previous	point	in	time.	This	makes	it	is	unsuitable	for	measuring	elapsed	time.	Monotonic	clocks.	Peg:	System.nanoTime().	They	are	guaranteed	to	always	move	forward.	The	difference	between
clock	reads	can	tell	you	how	much	time	elapsed	beween	two	checks.	The	absolute	value	of	the	clock	is	meaningless.	NTP	allows	the	clock	rate	to	be	speeded	up	or	slowed	down	by	up	to	0.05%,	but	NTP	cannot	cause	the	monotonic	clock	to	jump	forward	or	backward.	In	a	distributed	system,	using	a	monotonic	clock	for	measuring	elapsed	time	(peg:
timeouts),	is	usually	fine.	If	some	piece	of	sofware	is	relying	on	an	accurately	synchronised	clock,	the	result	is	more	likely	to	be	silent	and	subtle	data	loss	than	a	dramatic	crash.	You	need	to	carefully	monitor	the	clock	offsets	between	all	the	machines.	Timestamps	for	ordering	events	It	is	tempting,	but	dangerous	to	rely	on	clocks	for	ordering	of	events
across	multiple	nodes.	This	usually	imply	that	last	write	wins	(LWW),	often	used	in	both	multi-leader	replication	and	leaderless	databases	like	Cassandra	and	Riak,	and	data-loss	may	happen.	The	definition	of	"recent"	also	depends	on	local	time-of-day	clock,	which	may	well	be	incorrect.	Logical	clocks,	based	on	counters	instead	of	oscillating	quartz
crystal,	are	safer	alternative	for	ordering	events.	Logical	clocks	do	not	measure	time	of	the	day	or	elapsed	time,	only	relative	ordering	of	events.	This	contrasts	with	time-of-the-day	and	monotic	clocks	(also	known	as	physical	clocks).	Clock	readings	have	a	confidence	interval	It	doesn't	make	sense	to	think	of	a	clock	reading	as	a	point	in	time,	it	is	more
like	a	range	of	times,	within	a	confidence	internval:	for	example,	95%	confident	that	the	time	now	is	between	10.3	and	10.5.	The	most	common	implementation	of	snapshot	isolation	requires	a	monotonically	increasing	transaction	ID.	Spanner	implements	snapshot	isolation	across	datacenters	by	using	clock's	confidence	interval.	If	you	have	two
confidence	internvals	where	A	=	[A	earliest,	A	latest]	B	=	[B	earliest,	B	latest]	And	those	two	intervals	do	not	overlap	(A	earliest	<	A	latest	<	B	earliest	<	B	latest),	then	B	definetively	happened	after	A.	Spanner	deliberately	waits	for	the	length	of	the	confidence	interval	before	commiting	a	read-write	transaction,	so	their	confidence	intervals	do	not
overlap.	Spanner	needs	to	keep	the	clock	uncertainty	as	small	as	possible,	that's	why	Google	deploys	a	GPS	receiver	or	atomic	clock	in	each	datacenter.	Process	pauses	How	does	a	node	know	that	it	is	still	leader?	One	option	is	for	the	leader	to	obtain	a	lease	from	other	nodes	(similar	ot	a	lock	with	a	timeout).	It	will	be	the	leader	until	the	lease
expires;	to	remain	leader,	the	node	must	periodically	renew	the	lease.	If	the	node	fails,	another	node	can	takeover	when	it	expires.	We	have	to	be	very	careful	making	assumptions	about	the	time	that	has	passed	for	processing	requests	(and	holding	the	lease),	as	there	are	many	reasons	a	process	would	be	paused:	Garbage	collector	(stop	the	world)
Virtual	machine	can	be	suspended	In	laptops	execution	may	be	suspended	Operating	system	context-switches	Synchronous	disk	access	Swapping	to	disk	(paging)	Unix	process	can	be	stopped	(SIGSTOP)	You	cannot	assume	anything	about	timing	Response	time	guarantees	There	are	systems	that	require	software	to	respond	before	a	specific	deadline
(real-time	operating	system,	or	RTOS).	Library	functions	must	document	their	worst-case	execution	times;	dynamic	memory	allocation	may	be	restricted	or	disallowed	and	enormous	amount	of	testing	and	measurement	must	be	done.	Garbage	collection	could	be	treated	like	brief	planned	outages.	If	the	runtime	can	warn	the	application	that	a	node
soon	requires	a	GC	pause,	the	application	can	stop	sending	new	requests	to	that	node	and	perform	GC	while	no	requests	are	in	progress.	A	variant	of	this	idea	is	to	use	the	garbage	collector	only	for	short-lived	objects	and	to	restart	the	process	periodically.	Knowledge,	truth	and	lies	A	node	cannot	necessarily	trust	its	own	judgement	of	a	situation.
Many	distributed	systems	rely	on	a	quorum	(voting	among	the	nodes).	Commonly,	the	quorum	is	an	absolute	majority	of	more	than	half	of	the	nodes.	Fencing	tokens	Assume	every	time	the	lock	server	grant	sa	lock	or	a	lease,	it	also	returns	a	fencing	token,	which	is	a	number	that	increases	every	time	a	lock	is	granted	(incremented	by	the	lock	service).
Then	we	can	require	every	time	a	client	sends	a	write	request	to	the	storage	service,	it	must	include	its	current	fencing	token.	The	storage	server	remembers	that	it	has	already	processed	a	write	with	a	higher	token	number,	so	it	rejects	the	request	with	the	last	token.	If	ZooKeeper	is	used	as	lock	service,	the	transaciton	ID	zcid	or	the	node	version
cversion	can	be	used	as	a	fencing	token.	Byzantine	faults	Fencing	tokens	can	detect	and	block	a	node	that	is	inadvertently	acting	in	error.	Distributed	systems	become	much	harder	if	there	is	a	risk	that	nodes	may	"lie"	(byzantine	fault).	A	system	is	Byzantine	fault-tolerant	if	it	continues	to	operate	correctly	even	if	some	of	the	nodes	are	malfunctioning.
Aerospace	environments	Multiple	participating	organisations,	some	participants	may	attempt	ot	cheat	or	defraud	others	Consistency	and	consensus	The	simplest	way	of	handling	faults	is	to	simply	let	the	entire	service	fail.	We	need	to	find	ways	of	tolerating	faults.	Consistency	guarantees	Write	requests	arrive	on	different	nodes	at	different	times.
Most	replicated	databases	provide	at	least	eventual	consistency.	The	inconsistency	is	temporary,	and	eventually	resolves	itself	(convergence).	With	weak	guarantees,	you	need	to	be	constantly	aware	of	its	limitations.	Systems	with	stronger	guarantees	may	have	worse	performance	or	be	less	fault-tolerant	than	systems	with	weaker	guarantees.
Linearizability	Make	a	system	appear	as	if	there	were	only	one	copy	of	the	data,	and	all	operaitons	on	it	are	atomic.	read(x)	=>	v	Read	from	register	x,	database	returns	value	v.	write(x,v)	=>	r	r	could	be	ok	or	error.	If	one	client	read	returns	the	new	value,	all	subsequent	reads	must	also	return	the	new	value.	cas(x_old,	v_old,	v_new)	=>	r	an	atomic
compare-and-set	operation.	If	the	value	of	the	register	x	equals	v_old,	it	is	atomically	set	to	v_new.	If	x	!=	v_old	the	registers	is	unchanged	and	it	returns	an	error.	Serializability:	Transactions	behave	the	same	as	if	they	had	executed	some	serial	order.	Linearizability:	Recency	guarantee	on	reads	and	writes	of	a	register	(individual	object).	Locking	and
leader	election	To	ensure	that	there	is	indeed	only	one	leader,	a	lock	is	used.	It	must	be	linearizable:	all	nodes	must	agree	which	nodes	owns	the	lock;	otherwise	is	useless.	Apache	ZooKeepr	and	etcd	are	often	used	for	distributed	locks	and	leader	election.	Constraints	and	uniqueness	guarantees	Unique	constraints,	like	a	username	or	an	email	address
require	a	situation	similiar	to	a	lock.	A	hard	uniqueness	constraint	in	relational	databases	requires	linearizability.	Implementing	linearizable	systems	The	simplest	approach	would	be	to	have	a	single	copy	of	the	data,	but	this	would	not	be	able	to	tolerate	faults.	Single-leader	repolication	is	potentially	linearizable.	Consensus	algorithms	is	linearizable.
Multi-leader	replication	is	not	linearizable.	Leaderless	replication	is	probably	not	linearizable.	Multi-leader	replication	is	often	a	good	choice	for	multi-datacenter	replication.	On	a	network	interruption	betwen	data-centers	will	force	a	choice	between	linearizability	and	availability.	With	multi-leader	configuraiton,	each	data	center	can	operate	normally
with	interruptions.	With	single-leader	replication,	the	leader	must	be	in	one	of	the	datacenters.	If	the	application	requires	linearizable	reads	and	writes,	the	network	interruption	causes	the	application	to	become	unavailable.	If	your	applicaiton	requires	linearizability,	and	some	replicas	are	disconnected	from	the	other	replicas	due	to	a	network
problem,	the	some	replicas	cannot	process	request	while	they	are	disconnected	(unavailable).	If	your	application	does	not	require,	then	it	can	be	written	in	a	way	tha	each	replica	can	process	requests	independently,	even	if	it	is	disconnected	from	other	replicas	(peg:	multi-leader),	becoming	available.	If	an	application	does	not	require	linearizability	it
can	be	more	tolerant	of	network	problems.	The	unhelpful	CAP	theorem	CAP	is	sometimes	presented	as	Consistency,	Availability,	Partition	tolerance:	pick	2	out	of	3.	Or	being	said	in	another	way	either	Consistency	or	Available	when	Partitioned.	CAP	only	considers	one	consistency	model	(linearizability)	and	one	kind	of	fault	(network	partitions,	or
nodes	that	are	alive	but	disconnected	from	each	other).	It	doesn't	say	anything	about	network	delays,	dead	nodes,	or	other	trade-offs.	CAP	has	been	historically	influential,	but	nowadays	has	little	practical	value	for	designing	systems.	The	main	reason	for	dropping	linearizability	is	performance,	not	fault	tolerance.	Linearizabilit	is	slow	and	this	is	true
all	the	time,	not	on	only	during	a	network	fault.	Ordering	guarantees	Cause	comes	before	the	effect.	Causal	order	in	the	system	is	what	happened	before	what	(causally	consistent).	Total	order	allows	any	two	elements	to	be	compared.	Peg,	natural	numbers	are	totally	ordered.	Some	cases	one	set	is	greater	than	another	one.	Different	consistency
models:	Linearizablity.	total	order	of	operations:	if	the	system	behaves	as	if	there	is	only	a	single	copy	of	the	data.	Causality.	Two	events	are	ordered	if	they	are	causally	related.	Causality	defines	a	partial	order,	not	a	total	one	(incomparable	if	they	are	concurrent).	Linearizability	is	not	the	only	way	of	preserving	causality.	Causal	consistency	is	the
strongest	possible	consistency	model	that	does	not	slow	down	due	to	network	delays,	and	remains	available	in	the	face	of	network	failures.	You	need	to	know	which	operation	happened	before.	In	order	to	determine	the	causal	ordering,	the	database	needs	to	know	which	version	of	the	data	was	read	by	the	application.	The	version	number	from	the
prior	operation	is	passed	back	to	the	database	on	a	write.	We	can	create	sequence	numbers	in	a	total	order	that	is	consistent	with	causality.	With	a	single-leader	replication,	the	leader	can	simply	increment	a	counter	for	each	operation,	and	thus	assign	a	monotonically	increasing	sequence	number	to	each	operation	in	the	replication	log.	If	there	is	not
a	single	leader	(multi-leader	or	leaderless	database):	Each	node	can	generate	its	own	independent	set	of	sequence	numbers.	One	node	can	generate	only	odd	numbers	and	the	other	only	even	numbers.	Attach	a	timestamp	from	a	time-of-day	clock.	Preallocate	blocks	of	sequence	numbers.	The	only	problem	is	that	the	sequence	numbers	they	generate
are	not	consistent	with	causality.	They	do	not	correctly	capture	ordering	of	operations	across	different	nodes.	There	is	simple	method	for	generating	sequence	numbers	that	is	consistent	with	causality:	Lamport	timestamps.	Each	node	has	a	unique	identifier,	and	each	node	keeps	a	counter	of	the	number	of	operations	it	has	processed.	The	lamport
timestamp	is	then	simply	a	pair	of	(counter,	node	ID).	It	provides	total	order,	as	if	you	have	two	timestamps	one	with	a	greater	counter	value	is	the	greater	timestamp.	If	the	counter	values	are	the	same,	the	one	with	greater	node	ID	is	the	greater	timestamp.	Every	node	and	every	client	keeps	track	of	the	maximum	counter	value	it	has	seen	so	far,	and
includes	that	maximum	on	every	request.	When	a	node	receives	a	request	of	response	with	a	maximum	counter	value	greater	than	its	own	counter	value,	it	inmediately	increases	its	own	counter	to	that	maximum.	As	long	as	the	maximum	counter	value	is	carried	along	with	every	operation,	this	scheme	ensure	that	the	ordering	from	the	lamport
timestamp	is	consistent	with	causality.	Total	order	of	oepration	only	emerges	after	you	have	collected	all	of	the	operations.	Total	order	broadcast:	Reliable	delivery:	If	a	message	is	delivered	to	one	node,	it	is	delivered	to	all	nodes.	Totally	ordered	delivery:	Mesages	are	delivered	to	every	node	in	the	same	order.	ZooKeeper	and	etcd	implement	total
order	broadcast.	If	every	message	represents	a	write	to	the	database,	and	every	replica	processes	the	same	writes	in	the	same	order,	then	the	replcias	will	remain	consistent	with	each	other	(state	machine	replication).	A	node	is	not	allowed	to	retroactgively	insert	a	message	into	an	earlier	position	in	the	order	if	subsequent	messages	have	already
been	dlivered.	Another	way	of	looking	at	total	order	broadcast	is	that	it	is	a	way	of	creating	a	log.	Delivering	a	message	is	like	appending	to	the	log.	If	you	have	total	order	broadcast,	you	can	build	linearizable	storage	on	top	of	it.	Because	log	entries	are	delivered	to	all	nodes	in	the	same	order,	if	therer	are	several	concurrent	writes,	all	nodes	will
agree	on	which	one	came	first.	Choosing	the	first	of	the	conflicting	writes	as	the	winner	and	aborting	later	ones	ensures	that	all	nodes	agree	on	whether	a	write	was	commited	or	aborted.	This	procedure	ensures	linearizable	writes,	it	doesn't	guarantee	linearizable	reads.	To	make	reads	linearizable:	You	can	sequence	reads	through	the	log	by
appending	a	message,	reading	the	log,	and	performing	the	actual	read	when	the	message	is	delivered	back	to	you	(etcd	works	something	like	this).	Fetch	the	position	of	the	latest	log	message	in	a	linearizable	way,	you	can	query	that	position	to	be	delivered	to	you,	and	then	perform	the	read	(idea	behind	ZooKeeper's	sync()).	You	can	make	your	read
from	a	replica	that	is	synchronously	updated	on	writes.	For	every	message	you	want	to	send	through	total	order	broadcast,	you	increment-and-get	the	linearizable	integer	and	then	attach	the	value	you	got	from	the	register	as	a	sequence	number	to	the	message.	YOu	can	send	the	message	to	all	nodes,	and	the	recipients	will	deliver	the	message
consecutively	by	sequence	number.	Distributed	transactions	and	consensus	Basically	getting	several	nodes	to	agree	on	something.	There	are	situations	in	which	it	is	important	for	nodes	to	agree:	Leader	election:	All	nodes	need	to	agree	on	which	node	is	the	leader.	Atomic	commit:	Get	all	nodes	to	agree	on	the	outcome	of	the	transacction,	either	they
all	abort	or	roll	back.	Atomic	commit	and	two-phase	commit	(2PC)	A	transaction	either	succesfully	commit,	or	abort.	Atomicity	prevents	half-finished	results.	On	a	single	node,	transaction	commitment	depends	on	the	order	in	which	data	is	writen	to	disk:	first	the	data,	then	the	commit	record.	2PC	uses	a	coordinartor	(transaction	manager).	When	the
application	is	ready	to	commit,	the	coordinator	begins	phase	1:	it	sends	a	prepare	request	to	each	of	the	nodes,	asking	them	whether	are	able	to	commit.	If	all	participants	reply	"yes",	the	coordinator	sends	out	a	commit	request	in	phase	2,	and	the	commit	takes	place.	If	any	of	the	participants	replies	"no",	the	coordinator	sends	an	abort	request	to	all
nodes	in	phase	2.	When	a	participant	votes	"yes",	it	promises	that	it	will	definitely	be	able	to	commit	later;	and	once	the	coordiantor	decides,	that	decision	is	irrevocable.	Those	promises	ensure	the	atomicity	of	2PC.	If	one	of	the	participants	or	the	network	fails	during	2PC	(prepare	requests	fail	or	time	out),	the	coordinator	aborts	the	transaction.	If
any	of	the	commit	or	abort	request	fail,	the	coordinator	retries	them	indefinitely.	If	the	coordinator	fails	before	sending	the	prepare	requests,	a	participant	can	safely	abort	the	transaction.	The	only	way	2PC	can	complete	is	by	waiting	for	the	coordinator	to	revover	in	case	of	failure.	This	is	why	the	coordinator	must	write	its	commit	or	abort	decision	to
a	transaction	log	on	disk	before	sending	commit	or	abort	requests	to	participants.	Three-phase	commit	2PC	is	also	called	a	blocking	atomic	commit	protocol,	as	2Pc	can	become	stuck	waiting	for	the	coordinator	to	recover.	There	is	an	alternative	called	three-phase	commit	(3PC)	that	requires	a	perfect	failure	detector.	Distributed	transactions	carry	a
heavy	performance	penalty	due	the	disk	forcing	in	2PC	required	for	crash	recovery	and	additional	network	round-trips.	XA	(X/Open	XA	for	eXtended	Architecture)	is	a	standard	for	implementing	two-phase	commit	across	heterogeneous	technologies.	Supported	by	many	traditional	relational	databases	(PostgreSQL,	MySQL,	DB2,	SQL	Server,	and
Oracle)	and	message	brokers	(ActiveMQ,	HornetQ,	MSQMQ,	and	IBM	MQ).	The	problem	with	locking	is	that	database	transactions	usually	take	a	row-level	exclusive	lock	on	any	rows	they	modify,	to	prevent	dirty	writes.	While	those	locks	are	held,	no	other	transaction	can	modify	those	rows.	When	a	coordinator	fails,	orphaned	in-doubt	transactions	do
ocurr,	and	the	only	way	out	is	for	an	administrator	to	manually	decide	whether	to	commit	or	roll	back	the	transaction.	Fault-tolerant	consensus	One	or	more	nodes	may	propose	values,	and	the	consensus	algorithm	decides	on	those	values.	Consensus	algorithm	must	satisfy	the	following	properties:	Uniform	agreement:	No	two	nodes	decide	differently.
Integrity:	No	node	decides	twice.	Validity:	If	a	node	decides	the	value	v,	then	v	was	proposed	by	some	node.	Termination:	Every	node	that	does	not	crash	eventually	decides	some	value.	If	you	don't	care	about	fault	tolerance,	then	satisfying	the	first	three	properties	is	easy:	you	can	just	hardcode	one	node	to	be	the	"dictator"	and	let	that	node	make	all
of	the	decisions.	The	termination	property	formalises	the	idea	of	fault	tolerance.	Even	if	some	nodes	fail,	the	other	nodes	must	still	reach	a	decision.	Termination	is	a	liveness	property,	whereas	the	other	three	are	safety	properties.	The	best-known	fault-tolerant	consensus	algorithms	are	Viewstamped	Replication	(VSR),	Paxos,	Raft	and	Zab.	Total	order
broadcast	requires	messages	to	be	delivered	exactly	once,	in	the	same	order,	to	all	nodes.	So	total	order	broadcast	is	equivalent	to	repeated	rounds	of	consensus:	Due	to	agreement	property,	all	nodes	decide	to	deliver	the	same	messages	in	the	same	order.	Due	to	integrity,	messages	are	not	duplicated.	Due	to	validity,	messages	are	not	corrupted.	Due
to	termination,	messages	are	not	lost.	Single-leader	replication	and	consensus	All	of	the	consensus	protocols	dicussed	so	far	internally	use	a	leader,	but	they	don't	guarantee	that	the	lader	is	unique.	Protocols	define	an	epoch	number	(ballot	number	in	Paxos,	view	number	in	Viewstamped	Replication,	and	term	number	in	Raft).	Within	each	epoch,	the
leader	is	unique.	Every	time	the	current	leader	is	thought	to	be	dead,	a	vote	is	started	among	the	nodes	to	elect	a	new	leader.	This	election	is	given	an	incremented	epoch	number,	and	thus	epoch	numbers	are	totallly	ordered	and	monotonically	increasing.	If	there	is	a	conflic,	the	leader	with	the	higher	epoch	number	prevails.	A	node	cannot	trust	its
own	judgement.	It	must	collect	votes	from	a	quorum	of	nodes.	For	every	decision	that	a	leader	wants	to	make,	it	must	send	the	proposed	value	to	the	other	nodes	and	wait	for	a	quorum	of	nodes	to	respond	in	favor	of	the	proposal.	There	are	two	rounds	of	voting,	once	to	choose	a	leader,	and	second	time	to	vote	on	a	leader's	proposal.	The	quorums	for
those	two	votes	must	overlap.	The	biggest	difference	with	2PC,	is	that	2PC	requires	a	"yes"	vote	for	every	participant.	The	benefits	of	consensus	come	at	a	cost.	The	process	by	which	nodes	vote	on	proposals	before	they	are	decided	is	kind	of	synchronous	replication.	Consensus	always	require	a	strict	majority	to	operate.	Most	consensus	algorithms
assume	a	fixed	set	of	nodes	that	participate	in	voting,	which	means	that	you	can't	just	add	or	remove	nodes	in	the	cluster.	Dynamic	membership	extensions	are	much	less	well	understood	than	static	membership	algorithms.	Consensus	systems	rely	on	timeouts	to	detect	failed	nodes.	In	geographically	distributed	systems,	it	often	happens	that	a	node
falsely	believes	the	leader	to	have	failed	due	to	a	network	issue.	This	implies	frequest	leader	elecctions	resulting	in	terrible	performance,	spending	more	time	choosing	a	leader	than	doing	any	useful	work.	Membership	and	coordination	services	ZooKeeper	or	etcd	are	often	described	as	"distributed	key-value	stores"	or	"coordination	and	configuration
services".	They	are	designed	to	hold	small	amounts	of	data	that	can	fit	entirely	in	memory,	you	wouldn't	want	to	store	all	of	your	application's	data	here.	Data	is	replicated	across	all	the	nodes	using	a	fault-tolerant	total	order	broadcast	algorithm.	ZooKeeper	is	modeled	after	Google's	Chubby	lock	service	and	it	provides	some	useful	features:
Linearizable	atomic	operations:	Usuing	an	atomic	compare-and-set	operation,	you	can	implement	a	lock.	Total	ordering	of	operations:	When	some	resource	is	protected	by	a	lock	or	lease,	you	need	a	fencing	token	to	prevent	clients	from	conflicting	with	each	other	in	the	case	of	a	process	pause.	The	fencing	token	is	some	number	that	monotonically
increases	every	time	the	lock	is	acquired.	Failure	detection:	Clients	maintain	a	long-lived	session	on	ZooKeeper	servers.	When	a	ZooKeeper	node	fails,	the	session	remains	active.	When	ZooKeeper	declares	the	session	to	be	dead	all	locks	held	are	automatically	released.	Change	notifications:	Not	only	can	one	client	read	locks	and	values,	it	can	also
watch	them	for	changes.	ZooKeeper	is	super	useful	for	distributed	coordination.	ZooKeeper/Chubby	model	works	well	when	you	have	several	instances	of	a	process	or	service,	and	one	of	them	needs	to	be	chosen	as	a	leader	or	primary.	If	the	leader	fails,	one	of	the	other	nodes	should	take	over.	This	is	useful	for	single-leader	databases	and	for	job
schedulers	and	similar	stateful	systems.	ZooKeeper	runs	on	a	fixed	number	of	nodes,	and	performs	its	majority	votes	among	those	nodes	while	supporting	a	potentially	large	number	of	clients.	The	kind	of	data	managed	by	ZooKeeper	is	quite	slow-changing	like	"the	node	running	on	10.1.1.23	is	the	leader	for	partition	7".	It	is	not	intended	for	storing
the	runtime	state	of	the	application.	If	application	state	needs	to	be	replicated	there	are	other	tools	(like	Apache	BookKeeper).	ZooKeeper,	etcd,	and	Consul	are	also	often	used	for	service	discovery,	find	out	which	IP	address	you	need	to	connect	to	in	order	to	reach	a	particular	service.	In	cloud	environments,	it	is	common	for	virtual	machines	to
continually	come	an	go,	you	often	don't	know	the	IP	addresses	of	your	services	ahead	of	time.	Your	services	when	they	start	up	they	register	their	network	endpoints	ina	service	registry,	where	they	can	then	be	found	by	other	services.	ZooKeeper	and	friends	can	be	seen	as	part	of	a	long	history	of	research	into	membership	services,	determining
which	nodes	are	currently	active	and	live	members	of	a	cluster.	Batch	processing	Service	(online):	waits	for	a	request,	sends	a	response	back	Batch	processing	system	(offline):	takes	a	large	amount	of	input	data,	runs	a	job	to	process	it,	and	produces	some	output.	Stream	processing	systems	(near-real-time):	a	stream	processor	consumes	input	and
produces	outputs.	A	stream	job	operates	on	events	shortly	after	they	happen.	Batch	processing	with	Unix	tools	We	can	build	a	simple	log	analysis	job	to	get	the	five	most	popular	pages	on	your	site	cat	/var/log/nginx/access.log	|	awk	'{print	$7}'	|	sort	|	uniq	-c	|	sort	-r	-n	|	head	-n	5	|	You	could	write	the	same	thing	with	a	simpel	program.	The	difference
is	that	with	Unix	commands	automatically	handle	larger-than-memory	datasets	and	automatically	paralelizes	sorting	across	multiple	CPU	cores.	Programs	must	have	the	same	data	format	to	pass	information	to	one	another.	In	Unix,	that	interface	is	a	file	(file	descriptor),	an	ordered	sequence	of	bytes.	By	convention	Unix	programs	treat	this	sequence
of	bytes	as	ASCII	text.	The	unix	approach	works	best	if	a	program	simply	uses	stdin	and	stdout.	This	allows	a	shell	user	to	wire	up	the	input	and	output	in	whatever	way	they	want;	the	program	doesn't	know	or	care	where	the	input	is	coming	from	and	where	the	output	is	going	to.	Part	of	what	makes	Unix	tools	so	successful	is	that	they	make	it	quite
easy	to	see	what	is	going	on.	Map	reduce	and	distributed	filesystems	A	single	MapReduce	job	is	comparable	to	a	single	Unix	process.	Running	a	MapReduce	job	normally	does	not	modify	the	input	and	does	not	have	any	side	effects	other	than	producing	the	output.	While	Unix	tools	use	stdin	and	stdout	as	input	and	output,	MapReduce	jobs	read	and
write	files	on	a	distributed	filesystem.	In	Hadoop,	that	filesystem	is	called	HDFS	(Haddoop	Distributed	File	System).	HDFS	is	based	on	the	shared-nothing	principe.	Implemented	by	centralised	storage	appliance,	often	using	custom	hardware	and	special	network	infrastructure.	HDFS	consists	of	a	daemon	process	running	on	each	machine,	exposing	a
network	service	that	allows	other	nodes	to	access	files	stored	on	that	machine.	A	central	server	called	the	NameNode	keeps	track	of	which	file	blocks	are	stored	on	which	machine.	File	blocks	are	replciated	on	multiple	machines.	Reaplication	may	mean	simply	several	copies	of	the	same	data	on	multiple	machines,	or	an	erasure	coding	scheme	such	as
Reed-Solomon	codes,	which	allow	lost	data	to	be	recovered.	MapReduce	is	a	programming	framework	with	which	you	can	write	code	to	process	large	datasets	in	a	distributed	filesystem	like	HDFS.	Read	a	set	of	input	files,	and	break	it	up	into	records.	Call	the	mapper	function	to	extract	a	key	and	value	from	each	input	record.	Sort	all	of	the	key-value
pairs	by	key.	Call	the	reducer	function	to	iterate	over	the	sorted	key-value	pairs.	Mapper:	Called	once	for	every	input	record,	and	its	job	is	to	extract	the	key	and	value	from	the	input	record.	Reducer:	Takes	the	key-value	pairs	produced	by	the	mappers,	collects	all	the	values	belonging	to	the	same	key,	and	calls	the	reducer	with	an	interator	over	that
collection	of	vaues.	MapReduce	can	parallelise	a	computation	across	many	machines,	without	you	having	ot	write	code	to	explicitly	handle	the	parallelism.	THe	mapper	and	reducer	only	operate	on	one	record	at	a	time;	they	don't	need	to	know	where	their	input	is	coming	from	or	their	output	is	going	to.	In	Hadoop	MapReduce,	the	mapper	and	reducer
are	each	a	Java	class	that	implements	a	particular	interface.	The	MapReduce	scheduler	tries	to	run	each	mapper	on	one	of	the	machines	that	stores	a	replica	of	the	input	file,	putting	the	computation	near	the	data.	The	reduce	side	of	the	computation	is	also	partitioned.	While	the	number	of	map	tasks	is	determined	by	the	number	of	input	file	blocks,
the	number	of	reduce	tasks	is	configured	by	the	job	author.	To	ensure	that	all	key-value	pairs	with	the	same	key	end	up	in	the	same	reducer,	the	framework	uses	a	hash	of	the	key.	The	dataset	is	likely	too	large	to	be	sorted	with	a	conventional	sorting	algorithm	on	a	single	machine.	Sorting	is	performed	in	stages.	Whenever	a	mapper	finishes	reading
its	input	file	and	writing	its	sorted	output	files,	the	MapReduce	scheduler	notifies	the	reducers	that	they	can	start	fetching	the	output	files	from	that	mapper.	The	reducers	connect	to	each	of	the	mappers	and	download	the	files	of	sorted	key-value	pairs	for	their	partition.	Partitioning	by	reducer,	sorting	and	copying	data	partitions	from	mappers	to
reducers	is	called	shuffle.	The	reduce	task	takes	the	files	from	the	mappers	and	merges	them	together,	preserving	the	sort	order.	MapReduce	jobs	can	be	chained	together	into	workflows,	the	output	of	one	job	becomes	the	input	to	the	next	job.	In	Hadoop	this	chaining	is	done	implicitly	by	directory	name:	the	first	job	writes	its	output	to	a	designated
directory	in	HDFS,	the	second	job	reads	that	same	directory	name	as	its	input.	Compared	with	the	Unix	example,	it	could	be	seen	as	in	each	sequence	of	commands	each	command	output	is	written	to	a	temporary	file,	and	the	next	command	reads	from	the	temporary	file.	It	is	common	in	datasets	for	one	record	to	have	an	association	with	another
record:	a	foreign	key	in	a	relational	model,	a	document	reference	in	a	document	model,	or	an	edge	in	graph	model.	If	the	query	involves	joins,	it	may	require	multiple	index	lookpus.	MapReduce	has	no	concept	of	indexes.	When	a	MapReduce	job	is	given	a	set	of	files	as	input,	it	reads	the	entire	content	of	all	of	those	files,	like	a	full	table	scan.	In
analytics	it	is	common	to	want	to	calculate	aggregates	over	a	large	number	of	records.	Scanning	the	entire	input	might	be	quite	reasonable.	In	order	to	achieve	good	throughput	in	a	batch	process,	the	computation	must	be	local	to	one	machine.	Requests	over	the	network	are	too	slow	and	nondeterministic.	Queries	to	other	database	for	example	would
be	prohibitive.	A	better	approach	is	to	take	a	copy	of	the	data	(peg:	the	database)	and	put	it	in	the	same	distributed	filesystem.	MapReduce	programming	model	has	separated	the	physical	network	communication	aspects	of	the	computation	(getting	the	data	to	the	right	machine)	from	the	application	logic	(processing	the	data	once	you	have	it).	In	an
example	of	a	social	network,	small	number	of	celebrities	may	have	many	millions	of	followers.	Such	disproportionately	active	database	records	are	known	as	linchpin	objects	or	hot	keys.	A	single	reducer	can	lead	to	significant	skew	that	is,	one	reducer	that	must	process	significantly	more	records	than	the	others.	The	skewed	join	method	in	Pig	first
runs	a	sampling	job	to	determine	which	keys	are	hot	and	then	records	related	to	the	hot	key	need	to	be	replicated	to	all	reducers	handling	that	key.	Handling	the	hot	key	over	several	reducers	is	called	shared	join	method.	In	Crunch	is	similar	but	requires	the	hot	keys	to	be	specified	explicitly.	Hive's	skewed	join	optimisation	requries	hot	keys	to	be
specified	explicitly	and	it	uses	map-side	join.	If	you	can	make	certain	assumptions	about	your	input	data,	it	is	possible	to	make	joins	faster.	A	MapReducer	job	with	no	reducers	and	no	sorting,	each	mapper	simply	reads	one	input	file	and	writes	one	output	file.	The	output	of	a	batch	process	is	often	not	a	report,	but	some	other	kind	of	structure.
Google's	original	use	of	MapReduce	was	to	build	indexes	for	its	search	engine.	Hadoop	MapReduce	remains	a	good	way	of	building	indexes	for	Lucene/Solr.	If	you	need	to	perform	a	full-text	search,	a	batch	process	is	very	effective	way	of	building	indexes:	the	mappers	partition	the	set	of	documents	as	needed,	each	reducer	builds	the	index	for	its
partition,	and	the	index	files	are	written	to	the	distributed	filesystem.	It	pararellises	very	well.	Machine	learning	systems	such	as	clasifiers	and	recommendation	systems	are	a	common	use	for	batch	processing.	Key-value	stores	as	batch	process	output	The	output	of	those	batch	jobs	is	often	some	kind	of	database.	So,	how	does	the	output	from	the
batch	process	get	back	into	a	database?	Writing	from	the	batch	job	directly	to	the	database	server	is	a	bad	idea:	Making	a	network	request	for	every	single	record	is	magnitude	slower	than	the	normal	throughput	of	a	batch	task.	Mappers	or	reducers	concurrently	write	to	the	same	output	database	an	it	can	be	easily	overwhelmed.	You	have	to	worry
about	the	results	from	partially	completed	jobs	being	visible	to	other	systems.	A	much	better	solution	is	to	build	a	brand-new	database	inside	the	batch	job	an	write	it	as	files	to	the	job's	output	directory,	so	it	can	be	loaded	in	bulk	into	servers	that	handle	read-only	queries.	Various	key-value	stores	support	building	database	files	in	MapReduce
including	Voldemort,	Terrapin,	ElephanDB	and	HBase	bulk	loading.	By	treating	inputs	as	immutable	and	avoiding	side	effects	(such	as	writing	to	external	databases),	batch	jobs	not	only	achieve	good	performance	but	also	become	much	easier	to	maintain.	Design	principles	that	worked	well	for	Unix	also	seem	to	be	working	well	for	Hadoop.	The
MapReduce	paper	was	not	at	all	new.	The	sections	we've	seen	had	been	already	implemented	in	so-called	massively	parallel	processing	(MPP)	databases.	The	biggest	difference	is	that	MPP	databases	focus	on	parallel	execution	of	analytic	SQL	queries	on	a	cluster	of	machines,	while	the	combination	of	MapReduce	and	a	distributed	filesystem	provides
something	much	more	like	a	general-purpose	operating	system	that	can	run	arbitraty	programs.	Hadoop	opened	up	the	possibility	of	indiscriminately	dumpint	data	into	HDFS.	MPP	databases	typically	require	careful	upfront	modeling	of	the	data	and	query	patterns	before	importing	data	into	the	database's	proprietary	storage	format.	In	MapReduce
instead	of	forcing	the	producer	of	a	dataset	to	bring	it	into	a	standarised	format,	the	interpretation	of	the	data	becomes	the	consumer's	problem.	If	you	have	HDFS	and	MapReduce,	you	can	build	a	SQL	query	execution	engine	on	top	of	it,	and	indeed	this	is	what	the	Hive	project	did.	If	a	node	crashes	while	a	query	is	executing,	most	MPP	databases
abort	the	entire	query.	MPP	databases	also	prefer	to	keep	as	much	data	as	possible	in	memory.	MapReduce	can	tolerate	the	failure	of	a	map	or	reduce	task	without	it	affecting	the	job.	It	is	also	very	eager	to	write	data	to	disk,	partly	for	fault	tolerance,	and	partly	because	the	dataset	might	not	fit	in	memory	anyway.	MapReduce	is	more	appropriate	for
larger	jobs.	At	Google,	a	MapReduce	task	that	runs	for	an	hour	has	an	approximately	5%	risk	of	being	terminated	to	make	space	for	higher-priority	process.	Ths	is	why	MapReduce	is	designed	to	tolerate	frequent	unexpected	task	termination.	Beyond	MapReduce	In	response	to	the	difficulty	of	using	MapReduce	directly,	various	higher-level
programming	models	emerged	on	top	of	it:	Pig,	Hive,	Cascading,	Crunch.	MapReduce	has	poor	performance	for	some	kinds	of	processing.	It's	very	robust,	you	can	use	it	to	process	almost	arbitrarily	large	quantities	of	data	on	an	unreliable	multi-tenant	system	with	frequent	task	terminations,	and	it	will	still	get	the	job	done.	The	files	on	the	distributed
filesystem	are	simply	intermediate	state:	a	means	of	passing	data	from	one	job	to	the	next.	The	process	of	writing	out	the	intermediate	state	to	files	is	called	materialisation.	MapReduce's	approach	of	fully	materialising	state	has	some	downsides	compared	to	Unix	pipes:	A	MapReduce	job	can	only	start	when	all	tasks	in	the	preceding	jobs	have
completed,	whereas	rocesses	connected	by	a	Unix	pipe	are	started	at	the	same	time.	Mappers	are	often	redundant:	they	just	read	back	the	same	file	that	was	just	written	by	a	reducer.	Files	are	replicated	across	several	nodes,	which	is	often	overkill	for	such	temporary	data.	To	fix	these	problems	with	MapReduce,	new	execution	engines	for	distributed
batch	computations	were	developed,	Spark,	Tez	and	Flink.	These	new	ones	can	handle	an	entire	workflow	as	one	job,	rather	than	breaking	it	up	into	independent	subjobs	(dataflow	engines).	These	functions	need	not	to	take	the	strict	roles	of	alternating	map	and	reduce,	they	are	assembled	in	flexible	ways,	in	functions	called	operators.	Spark,	Flink,
and	Tex	avoid	writing	intermediate	state	to	HDFS,	so	they	take	a	different	approach	to	tolerating	faults:	if	a	machine	fails	and	the	intermediate	state	on	that	machine	is	lost,	it	is	recomputed	from	other	data	that	is	still	available.	The	framework	must	keep	track	of	how	a	given	piece	of	data	was	computed.	Spark	uses	the	resilient	distributed	dataset
(RDD)	to	track	ancestry	data,	while	Flink	checkpoints	operator	state,	allowing	it	to	resume	running	an	operator	that	ran	into	a	fault	during	its	execution.	Graphs	and	iterative	processing	It's	interesting	to	look	at	graphs	in	batch	processing	context,	where	the	goal	is	to	perform	some	kind	of	offline	processing	or	analysis	on	an	entire	graph.	This	need
often	arises	in	machine	learning	applications	such	as	recommednation	engines,	or	in	ranking	systems.	"repeating	until	done"	cannot	be	expressed	in	plain	MapReduce	as	it	runs	in	a	single	pass	over	the	data	and	some	extra	trickery	is	necessary.	An	optimisation	for	batch	processing	graphs,	the	bulk	synchronous	parallel	(BSP)	has	become	popular.	It	is
implemented	by	Apache	Giraph,	Spark's	GraphX	API,	and	Flink's	Gelly	API	(_Pregel	model,	as	Google	Pregel	paper	popularised	it).	One	vertex	can	"send	a	message"	to	another	vertex,	and	typically	those	messages	are	sent	along	the	edges	in	a	graph.	The	difference	from	MapReduce	is	that	a	vertex	remembers	its	state	in	memory	from	one	iteration	to
the	next.	The	fact	that	vertices	can	only	communicate	by	message	passing	helps	improve	the	performance	of	Pregel	jobs,	since	messages	can	be	batched.	Fault	tolerance	is	achieved	by	periodically	checkpointing	the	state	of	all	vertices	at	the	end	of	an	interation.	The	framework	may	partition	the	graph	in	arbitrary	ways.	Graph	algorithms	often	have	a
lot	of	cross-machine	communication	overhead,	and	the	intermediate	state	is	often	bigger	than	the	original	graph.	If	your	graph	can	fit	into	memory	on	a	single	computer,	it's	quite	likely	that	a	single-machine	algorithm	will	outperform	a	distributed	batch	process.	If	the	graph	is	too	big	to	fit	on	a	single	machine,	a	distributed	approach	such	as	Pregel	is
unavoidable.	Stream	processing	We	can	run	the	processing	continuously,	abandoning	the	fixed	time	slices	entirely	and	simply	processing	every	event	as	it	happens,	that's	the	idea	behind	stream	processing.	Data	that	is	incrementally	made	available	over	time.	Transmitting	event	streams	A	record	is	more	commonly	known	as	an	event.	Something	that
happened	at	some	point	in	time,	it	usually	contains	a	timestamp	indicating	when	it	happened	acording	to	a	time-of-day	clock.	An	event	is	generated	once	by	a	producer	(publisher	or	sender),	and	then	potentially	processed	by	multiple	consumers	(subcribers	or	recipients).	Related	events	are	usually	grouped	together	into	a	topic	or	a	stream.	A	file	or	a
database	is	sufficient	to	connect	producers	and	consumers:	a	producer	writes	every	event	that	it	generates	to	the	datastore,	and	each	consumer	periodically	polls	the	datastore	to	check	for	events	that	have	appeared	since	it	last	ran.	However,	when	moving	toward	continual	processing,	polling	becomes	expensive.	It	is	better	for	consumers	to	be
notified	when	new	events	appear.	Databases	offer	triggers	but	they	are	limited,	so	specialised	tools	have	been	developed	for	the	purpose	of	delivering	event	notifications.	Messaging	systems	Direct	messaging	from	producers	to	consumers	Within	the	publish/subscribe	model,	we	can	differentiate	the	systems	by	asking	two	questions:	What	happens	if
the	producers	send	messages	faster	than	the	consumers	can	process	them?	The	system	can	drop	messages,	buffer	the	messages	in	a	queue,	or	apply	backpressure	(flow	control,	blocking	the	producer	from	sending	more	messages).	What	happens	if	nodes	crash	or	temporarily	go	offline,	are	any	messages	lost?	Durability	may	require	some	combination
of	writing	to	disk	and/or	replication.	A	number	of	messaging	systems	use	direct	communication	between	producers	and	consumers	without	intermediary	nodes:	UDP	multicast,	where	low	latency	is	important,	application-level	protocols	can	recover	lost	packets.	Brokerless	messaging	libraries	such	as	ZeroMQ	StatsD	and	Brubeck	use	unreliable	UDP
messaging	for	collecting	metrics	If	the	consumer	expose	a	service	on	the	network,	producers	can	make	a	direct	HTTP	or	RPC	request	to	push	messages	to	the	consumer.	This	is	the	idea	behind	webhooks,	a	callback	URL	of	one	service	is	registered	with	another	service,	and	makes	a	request	to	that	URL	whenever	an	event	occurs	These	direct
messaging	systems	require	the	application	code	to	be	aware	of	the	possibility	of	message	loss.	The	faults	they	can	tolerate	are	quite	limited	as	they	assume	that	producers	and	consumers	are	constantly	online.	If	a	consumer	if	offline,	it	may	miss	messages.	Some	protocols	allow	the	producer	to	retry	failed	message	deliveries,	but	it	may	break	down	if
the	producer	crashes	losing	the	buffer	or	messages.	Message	brokers	An	alternative	is	to	send	messages	via	a	message	broker	(or	message	queue),	which	is	a	kind	of	database	that	is	optimised	for	handling	message	streams.	It	runs	as	a	server,	with	producers	and	consumers	connecting	to	it	as	clients.	Producers	write	messages	to	the	broker,	and
consumers	receive	them	by	reading	them	from	the	broker.	By	centralising	the	data,	these	systems	can	easily	tolerate	clients	that	come	and	go,	and	the	question	of	durability	is	moved	to	the	broker	instead.	Some	brokers	only	keep	messages	in	memory,	while	others	write	them	down	to	disk	so	that	they	are	not	lost	inc	ase	of	a	broker	crash.	A
consequence	of	queueing	is	that	consuemrs	are	generally	asynchronous:	the	producer	only	waits	for	the	broker	to	confirm	that	it	has	buffered	the	message	and	does	not	wait	for	the	message	to	be	processed	by	consumers.	Some	brokers	can	even	participate	in	two-phase	commit	protocols	using	XA	and	JTA.	This	makes	them	similar	to	databases,	aside
some	practical	differences:	Most	message	brokers	automatically	delete	a	message	when	it	has	been	successfully	delivered	to	its	consumers.	This	makes	them	not	suitable	for	long-term	storage.	Most	message	brokers	assume	that	their	working	set	is	fairly	small.	If	the	broker	needs	to	buffer	a	lot	of	messages,	each	individual	message	takes	longer	to
process,	and	the	overall	throughput	may	degrade.	Message	brokers	often	support	some	way	of	subscribing	to	a	subset	of	topics	matching	some	pattern.	Message	brokers	do	not	support	arbitrary	queries,	but	they	do	notify	clients	when	data	changes.	This	is	the	traditional	view	of	message	brokers,	encapsulated	in	standards	like	JMS	and	AMQP,	and
implemented	in	RabbitMQ,	ActiveMQ,	HornetQ,	Qpid,	TIBCO	Enterprise	Message	Service,	IBM	MQ,	Azure	Service	Bus,	and	Google	Cloud	Pub/Sub.	When	multiple	consumers	read	messages	in	the	same	topic,	to	main	patterns	are	used:	Load	balancing:	Each	message	is	delivered	to	one	of	the	consumers.	The	broker	may	assign	messages	to	consumers
arbitrarily.	Fan-out:	Each	message	is	delivered	to	all	of	the	consumers.	In	order	to	ensure	that	the	message	is	not	lost,	message	brokers	use	acknowledgements:	a	client	must	explicitly	tell	the	broker	when	it	has	finished	processing	a	message	so	that	the	broker	can	remove	it	from	the	queue.	The	combination	of	laod	balancing	with	redelivery	inevitably
leads	to	messages	being	reordered.	To	avoid	this	issue,	youc	an	use	a	separate	queue	per	consumer	(not	use	the	load	balancing	feature).	Partitioned	logs	A	key	feature	of	barch	process	is	that	you	can	run	them	repeatedly	without	the	risk	of	damaging	the	input.	This	is	not	the	case	with	AMQP/JMS-style	messaging:	receiving	a	message	is	destructive	if
the	acknowledgement	causes	it	to	be	deleted	from	the	broker.	If	you	add	a	new	consumer	to	a	messaging	system,	any	prior	messages	are	already	gone	and	cannot	be	recovered.	We	can	have	a	hybrid,	combining	the	durable	storage	approach	of	databases	with	the	low-latency	notifications	facilities	of	messaging,	this	is	the	idea	behind	log-based
message	brokers.	A	log	is	simply	an	append-only	sequence	of	records	on	disk.	The	same	structure	can	be	used	to	implement	a	message	broker:	a	producer	sends	a	message	by	appending	it	to	the	end	of	the	log,	and	consumer	receives	messages	by	reading	the	log	sequentially.	If	a	consumer	reaches	the	end	of	the	log,	it	waits	for	a	notification	that	a
new	message	has	been	appended.	To	scale	to	higher	throughput	than	a	single	disk	can	offer,	the	log	can	be	partitioned.	Different	partitions	can	then	be	hosted	on	different	machines.	A	topic	can	then	be	defined	as	a	group	of	partitions	that	all	carry	messages	of	the	same	type.	Within	each	partition,	the	broker	assigns	monotonically	increasing
sequence	number,	or	offset,	to	every	message.	Apache	Kafka,	Amazon	Kinesis	Streams,	and	Twitter's	DistributedLog,	are	log-based	message	brokers	that	work	like	this.	The	log-based	approach	trivially	supports	fan-out	messaging,	as	several	consumers	can	independently	read	the	log	reading	without	affecint	each	other.	Reading	a	message	does	not
delete	it	from	the	log.	To	eachieve	load	balancing	the	broker	can	assign	entire	partitions	to	nodes	in	the	consumer	group.	Each	client	then	consumes	all	the	messages	in	the	partition	it	has	been	assigned.	This	approach	has	some	downsides.	The	number	of	nodes	sharing	the	work	of	consuming	a	topic	can	be	at	most	the	number	of	log	partitions	in	that

topic.	If	a	single	message	is	slow	to	process,	it	holds	up	the	processing	of	subsequent	messages	in	that	partition.	In	situations	where	messages	may	be	expensive	to	process	and	you	want	to	pararellise	processing	on	a	message-by-message	basis,	and	where	message	ordering	is	not	so	important,	the	JMS/AMQP	style	of	message	broker	is	preferable.	In
situations	with	high	message	throughput,	where	each	message	is	fast	to	process	and	where	message	ordering	is	important,	the	log-based	approach	works	very	well.	It	is	easy	to	tell	which	messages	have	been	processed:	al	messages	with	an	offset	less	than	a	consumer	current	offset	have	already	been	processed,	and	all	messages	with	a	greater	offset
have	not	yet	been	seen.	The	offset	is	very	similar	to	the	log	sequence	number	that	is	commonly	found	in	single-leader	database	replication.	The	message	broker	behaves	like	a	leader	database,	and	the	consumer	like	a	follower.	If	a	consumer	node	fails,	another	node	in	the	consumer	group	starts	consuming	messages	at	the	last	recorded	offset.	If	the
consumer	had	processed	subsequent	messages	but	not	yet	recorded	their	offset,	those	messages	will	be	processed	a	second	time	upon	restart.	If	you	only	ever	append	the	log,	you	will	eventually	run	out	of	disk	space.	From	time	to	time	old	segments	are	deleted	or	moved	to	archive.	If	a	slow	consumer	cannot	keep	with	the	rate	of	messages,	and	it	falls
so	far	behind	that	its	consumer	offset	poitns	to	a	deleted	segment,	it	will	miss	some	of	the	messages.	The	throughput	of	a	log	remains	more	or	less	constant,	since	every	message	is	written	to	disk	anyway.	This	is	in	contrast	to	messaging	systems	that	keep	messages	in	memory	by	default	and	only	write	them	to	disk	if	the	queue	grows	too	large:
systems	are	fast	when	queues	are	short	and	become	much	slower	when	they	start	writing	to	disk,	throughput	depends	on	the	amount	of	history	retained.	If	a	consumer	cannot	keep	up	with	producers,	the	consumer	can	drop	messages,	buffer	them	or	applying	backpressure.	You	can	monitor	how	far	a	consumer	is	behind	the	head	of	the	log,	and	raise
an	alert	if	it	falls	behind	significantly.	If	a	consumer	does	fall	too	far	behind	and	start	missing	messages,	only	that	consumer	is	affected.	With	AMQP	and	JMS-style	message	brokers,	processing	and	acknowledging	messages	is	a	destructive	operation,	since	it	causes	the	messages	to	be	deleted	on	the	broker.	In	a	log-based	message	broker,	consuming
messages	is	more	like	reading	from	a	file.	The	offset	is	under	the	consumer's	control,	so	you	can	easily	be	manipulated	if	necessary,	like	for	replaying	old	messages.	Databases	and	streams	A	replciation	log	is	a	stream	of	a	database	write	events,	produced	by	the	leader	as	it	processes	transactions.	Followers	apply	that	stream	of	writes	to	their	own
copy	of	the	database	and	thus	end	up	with	an	accurate	copy	of	the	same	data.	If	periodic	full	database	dumps	are	too	slow,	an	alternative	that	is	sometimes	used	is	dual	writes.	For	example,	writing	to	the	database,	then	updating	the	search	index,	then	invalidating	the	cache.	Dual	writes	have	some	serious	problems,	one	of	which	is	race	conditions.	If
you	have	concurrent	writes,	one	value	will	simply	silently	overwrite	another	value.	One	of	the	writes	may	fail	while	the	other	succeeds	and	two	systems	will	become	inconsistent.	The	problem	with	most	databases	replication	logs	is	that	they	are	considered	an	internal	implementation	detail,	not	a	public	API.	Recently	there	has	been	a	growing	interest
in	change	data	capture	(CDC),	which	is	the	process	of	observing	all	data	changes	written	to	a	database	and	extracting	them	in	a	form	in	which	they	can	be	replicated	to	other	systems.	For	example,	you	can	capture	the	changes	in	a	database	and	continually	apply	the	same	changes	to	a	search	index.	We	can	call	log	consumers	derived	data	systems:	the
data	stored	in	the	search	index	and	the	data	warehouse	is	just	another	view.	Change	data	capture	is	a	mechanism	for	ensuring	that	all	changes	made	to	the	system	of	record	are	also	reflected	in	the	derived	data	systems.	Change	data	capture	makes	one	database	the	leader,	and	turns	the	others	into	followers.	Database	triggers	can	be	used	to
implement	change	data	capture,	but	they	tend	to	be	fragile	and	have	significant	performance	overheads.	Parsing	the	replication	log	can	be	a	more	robust	approach.	LinkedIn's	Databus,	Facebook's	Wormhole,	and	Yahoo!'s	Sherpa	use	this	idea	at	large	scale.	Bottled	Watter	implements	CDC	for	PostgreSQL	decoding	the	write-ahead	log,	Maxwell	and
Debezium	for	something	similar	for	MySQL	by	parsing	the	binlog,	Mongoriver	reads	the	MongoDB	oplog,	and	GoldenGate	provide	similar	facilities	for	Oracle.	Keeping	all	changes	forever	would	require	too	much	disk	space,	and	replaying	it	would	take	too	long,	so	the	log	needs	to	be	truncated.	You	can	start	with	a	consistent	snapshot	of	the	database,
and	it	must	correspond	to	a	known	position	or	offset	in	the	change	log.	The	storage	engine	periodically	looks	for	log	records	with	the	same	key,	throws	away	any	duplicates,	and	keeps	only	the	most	recent	update	for	each	key.	An	update	with	a	special	null	value	(a	tombstone)	indicates	that	a	key	was	deleted.	The	same	idea	works	in	the	context	of	log-
based	mesage	brokers	and	change	data	capture.	RethinkDB	allows	queries	to	subscribe	to	notifications,	Firebase	and	CouchDB	provide	data	synchronisation	based	on	change	feed.	Kafka	Connect	integrates	change	data	capture	tools	for	a	wide	range	of	database	systems	with	Kafka.	Event	sourcing	There	are	some	parallels	between	the	ideas	we've
discussed	here	and	event	sourcing.	Similarly	to	change	data	capture,	event	sourcing	involves	storing	all	changes	to	the	application	state	as	a	log	of	change	events.	Event	sourcing	applyies	the	idea	at	a	different	level	of	abstraction.	Event	sourcing	makes	it	easier	to	evolve	applications	over	time,	helps	with	debugging	by	making	it	easier	to	understand
after	the	fact	why	something	happened,	and	guards	against	application	bugs.	Specialised	databases	such	as	Event	Store	have	been	developed	to	support	applications	using	event	sourcing.	Applications	that	use	event	sourcing	need	to	take	the	log	of	evetns	and	transform	it	into	application	state	that	is	suitable	for	showing	to	a	user.	Replying	the	event
log	allows	you	to	reconstruct	the	current	state	of	the	system.	Applications	that	use	event	sourcing	typically	have	some	mechanism	for	storing	snapshots.	Event	sourcing	philosophy	is	careful	to	distinguis	between	events	and	commands.	When	a	request	from	a	user	first	arrives,	it	is	initially	a	command:	it	may	still	fail	(like	some	integrity	condition	is
violated).	If	the	validation	is	successful,	it	becomes	an	event,	which	is	durable	and	immutable.	A	consumer	of	the	event	stream	is	not	allowed	to	reject	an	event:	Any	validation	of	a	command	needs	to	happen	synchronously,	before	it	becomes	an	event.	For	example,	by	using	a	serializable	transaction	that	atomically	validates	the	command	and	publishes
the	event.	Alternatively,	the	user	request	to	serve	a	seat	could	be	split	into	two	events:	first	a	tentative	reservation,	and	then	a	separate	confirmation	event	once	the	reservation	has	been	validated.	This	split	allows	the	validation	to	take	place	in	an	asynchronous	process.	Whenever	you	have	state	changes,	that	state	is	the	result	of	the	events	that
mutated	it	over	time.	Mutable	state	and	an	append-only	log	of	immutable	events	do	not	contradict	each	other.	As	an	example,	financial	bookkeeping	is	recorded	as	an	append-only	ledger.	It	is	a	log	of	events	describing	money,	good,	or	services	that	have	changed	hands.	Profit	and	loss	or	the	balance	sheet	are	derived	from	the	ledger	by	adding	them
up.	If	a	mistake	is	made,	accountants	don't	erase	or	change	the	incorrect	transaction,	instead,	they	add	another	transaction	that	compensates	for	the	mistake.	If	buggy	code	writes	bad	data	to	a	database,	recovery	is	much	harder	if	the	code	is	able	to	destructively	overwrite	data.	Immutable	events	also	capture	more	information	than	just	the	current
state.	If	you	persisted	a	cart	into	a	regular	database,	deleting	an	item	would	effectively	loose	that	event.	You	can	derive	views	from	the	same	event	log,	Druid	ingests	directly	from	Kafka,	Pistachio	is	a	distributed	key-value	sotre	that	uses	Kafka	as	a	commit	log,	Kafka	Connect	sinks	can	export	data	from	Kafka	to	various	different	databases	and	indexes.
Storing	data	is	normally	quite	straightforward	if	you	don't	have	to	worry	about	how	it	is	going	to	be	queried	and	accessed.	You	gain	a	lot	of	flexibility	by	separating	the	form	in	which	data	is	written	from	the	form	it	is	read,	this	idea	is	known	as	command	query	responsibility	segregation	(CQRS).	There	is	this	fallacy	that	data	must	be	written	in	the
same	form	as	it	will	be	queried.	The	biggest	downside	of	event	sourcing	and	change	data	capture	is	that	consumers	of	the	event	log	are	usually	asynchronous,	a	user	may	make	a	write	to	the	log,	then	read	from	a	log	derived	view	and	find	that	their	write	has	not	yet	been	reflected.	The	limitations	on	immutable	event	history	depends	on	the	amount	of
churn	in	the	dataset.	Some	workloads	mostly	add	data	and	rarely	update	or	delete;	they	are	wasy	to	make	immutable.	Other	workloads	have	a	high	rate	of	updates	and	deletes	on	a	comparaively	small	dataset;	in	these	cases	immutable	history	becomes	an	issue	because	of	fragmentation,	performance	compaction	and	garbage	collection.	There	may	also
be	circumstances	in	which	you	need	data	to	be	deleted	for	administrative	reasons.	Sometimes	you	may	want	to	rewrite	history,	Datomic	calls	this	feature	excision.	Processing	Streams	What	you	can	do	with	the	stream	once	you	have	it:	You	can	take	the	data	in	the	events	and	write	it	to	the	database,	cache,	search	index,	or	similar	storage	system,	from
where	it	can	thenbe	queried	by	other	clients.	You	can	push	the	events	to	users	in	some	way,	for	example	by	sending	email	alerts	or	push	notifications,	or	to	a	real-time	dashboard.	You	can	process	one	or	more	input	streams	to	produce	one	or	more	output	streams.	Processing	streams	to	produce	other,	derived	streams	is	what	an	operator	job	does.	The
one	crucial	difference	to	batch	jobs	is	that	a	stream	never	ends.	Complex	event	processing	(CEP)	is	an	approach	for	analising	event	streams	where	you	can	specify	rules	to	search	for	certain	patterns	of	events	in	them.	When	a	match	is	found,	the	engine	emits	a	complex	event.	Queries	are	stored	long-term,	and	events	from	the	input	streams
continuously	flow	past	them	in	search	of	a	query	that	matches	an	event	pattern.	Implementations	of	CEP	include	Esper,	IBM	InfoSphere	Streams,	Apama,	TIBCO	StreamBase,	and	SQLstream.	The	boundary	between	CEP	and	stream	analytics	is	blurry,	analytics	tends	to	be	less	interested	in	finding	specific	event	sequences	and	is	more	oriented	toward
aggregations	and	statistical	metrics.	Frameworks	with	analytics	in	mind	are:	Apache	Storm,	Spark	Streaming,	Flink,	Concord,	Samza,	and	Kafka	Streams.	Hosted	services	include	Google	Cloud	Dataflow	and	Azure	Stream	Analytics.	Sometimes	there	is	a	need	to	search	for	individual	events	continually,	such	as	full-text	search	queries	over	streams.
Message-passing	ystems	are	also	based	on	messages	and	events,	we	normally	don't	think	of	them	as	stream	processors.	There	is	some	crossover	area	between	RPC-like	systems	and	stream	processing.	Apache	Storm	has	a	feature	called	distributed	RPC.	In	a	batch	process,	the	time	at	which	the	process	is	run	has	nothing	to	do	with	the	time	at	which
the	events	actually	occurred.	Many	stream	processing	frameworks	use	the	local	system	clock	on	the	processing	machine	(processing	time)	to	determine	windowing.	It	is	a	simple	approach	that	breaks	down	if	there	is	any	significant	processing	lag.	Confusing	event	time	and	processing	time	leads	to	bad	data.	Processing	time	may	be	unreliable	as	the
stream	processor	may	queue	events,	restart,	etc.	It's	better	to	take	into	account	the	original	event	time	to	count	rates.	You	can	never	be	sure	when	you	have	received	all	the	events.	You	can	time	out	and	declare	a	window	ready	after	you	have	not	seen	any	new	events	for	a	while,	but	it	could	still	happen	that	some	events	are	delayed	due	a	network
interruption.	You	need	to	be	able	to	handle	such	stranggler	events	that	arrive	after	the	window	has	already	been	declared	complete.	You	can	ignore	the	stranggler	events,	tracking	the	number	of	dropped	events	as	a	metric.	Publish	a	correction,	an	updated	value	for	the	window	with	stranglers	included.	You	may	also	need	to	retrat	the	previous	output.
To	adjust	for	incofrrect	device	clocks,	one	approach	is	to	log	three	timestamps:	The	time	at	which	the	event	occurred,	according	to	the	device	clock	The	time	at	which	the	event	was	sent	to	the	server,	according	to	the	device	clock	The	time	at	which	the	event	was	received	by	the	server,	according	to	the	server	clock.	You	can	estimate	the	offset
between	the	device	clock	and	the	server	clock,	then	apply	that	offset	to	the	event	timestamp,	and	thus	estimate	the	true	time	at	which	the	event	actually	ocurred.	Several	types	of	windows	are	in	common	use:	Tumbling	window:	Fixed	length.	If	you	have	a	1-minute	tumbling	window,	all	events	between	10:03:00	and	10:03:59	will	be	grouped	in	one
window,	next	window	would	be	10:04:00-10:04:59	Hopping	window:	Fixed	length,	but	allows	windows	to	overlap	in	order	to	provide	some	smoothing.	If	you	have	a	5-minute	window	with	a	hop	size	of	1	minute,	it	would	contain	the	events	between	10:03:00	and	10:07:59,	next	window	would	cover	10:04:00-10:08:59	Sliding	window:	Events	that	occur
within	some	interval	of	each	other.	For	example,	a	5-minute	sliding	window	would	cover	10:03:39	and	10:08:12	because	they	are	less	than	4	minutes	apart.	Session	window:	No	fixed	duration.	All	events	for	the	same	user,	the	window	ends	when	the	user	has	been	inactive	for	some	time	(30	minutes).	Common	in	website	analytics	The	fact	that	new
events	can	appear	anytime	on	a	stream	makes	joins	on	stream	challenging.	Stream-stream	joins	You	want	to	detect	recent	trends	in	searched-for	URLs.	You	log	an	event	containing	the	query.	Someone	clicks	one	of	the	search	results,	you	log	another	event	recording	the	click.	You	need	to	bring	together	the	events	for	the	search	action	and	the	click
action.	For	this	type	of	join,	a	stream	processor	needs	to	maintain	state:	All	events	that	occurred	in	the	last	hour,	indexed	by	session	ID.	Whenever	a	search	event	or	click	event	occurs,	it	is	added	to	the	appropriate	index,	and	the	stream	processor	also	checks	the	other	index	to	see	if	another	event	for	the	same	session	ID	has	already	arrived.	If	there	is
a	matching	event,	you	emit	an	event	saying	search	result	was	clicked.	Stream-table	joins	Sometimes	know	as	enriching	the	activity	events	with	information	from	the	database.	Imagine	two	datasets:	a	set	of	usr	activity	events,	and	a	database	of	user	profiles.	Activity	events	include	the	user	ID,	and	the	the	resulting	stream	should	have	the	augmented
profile	information	based	upon	the	user	ID.	The	stream	process	needs	to	look	at	one	activity	event	at	a	time,	look	up	the	event's	user	ID	in	the	database,	and	add	the	profile	information	to	the	activity	event.	THe	database	lookup	could	be	implemented	by	querying	a	remote	database.,	however	this	would	be	slow	and	risk	overloading	the	database.
Another	approach	is	to	load	a	copy	of	the	database	into	the	stream	processor	so	that	it	can	be	queried	locally	without	a	network	round-trip.	The	stream	processor's	local	copy	of	the	database	needs	to	be	kept	up	to	date;	this	can	be	solved	with	change	data	capture.	Table-table	join	The	stream	process	needs	to	maintain	a	database	containing	the	set	of
followers	for	each	user	so	it	knows	which	timelines	need	to	be	updated	when	a	new	tweet	arrives.	Time-dependence	join	The	previous	three	types	of	join	require	the	stream	processor	to	maintain	some	state.	If	state	changes	over	time,	and	you	join	with	some	state,	what	point	in	time	do	you	use	for	the	join?	If	the	ordering	of	events	across	streams	is
undetermined,	the	join	becomes	nondeterministic.	This	issue	is	known	as	slowly	changing	dimension	(SCD),	often	addressed	by	using	a	unique	identifier	for	a	particular	version	of	the	joined	record.	For	example,	we	can	turn	the	system	deterministic	if	every	time	the	tax	rate	changes,	it	is	given	a	new	identifier,	and	the	invoice	includes	the	identifier	for
the	tax	rate	at	the	time	of	sale.	But	as	a	consequence	makes	log	compation	impossible.	Fault	tolerance	Batch	processing	frameworks	can	tolerate	faults	fairly	easy:if	a	task	in	a	MapReduce	job	fails,	it	can	simply	be	started	again	on	another	machine,	input	files	are	immutable	and	the	output	is	written	to	a	separate	file.	Even	though	restarting	tasks
means	records	can	be	processed	multiple	times,	the	visible	effect	in	the	output	is	as	if	they	had	only	been	processed	once	(exactly-once-semantics	or	effectively-once).	With	stream	processing	waiting	until	a	tasks	if	finished	before	making	its	ouput	visible	is	not	an	option,	stream	is	infinite.	One	solution	is	to	break	the	stream	into	small	blocks,	and	treat
each	block	like	a	minuature	batch	process	(micro-batching).	This	technique	is	used	in	Spark	Streaming,	and	the	batch	size	is	typically	around	one	second.	An	alternative	approach,	used	in	Apache	Flint,	is	to	periodically	generate	rolling	checkpoints	of	state	and	write	them	to	durable	storage.	If	a	stream	operator	crashes,	it	can	restart	from	its	most
recent	checkpoint.	Microbatching	and	chekpointing	approaches	provide	the	same	exactly-once	semantics	as	batch	processing.	However,	as	soon	as	output	leaves	the	stream	processor,	the	framework	is	no	longer	able	to	discard	the	output	of	a	failed	batch.	In	order	to	give	appearance	of	exactly-once	processing,	things	either	need	to	happen	atomically
or	none	of	must	happen.	Things	should	not	go	out	of	sync	of	each	other.	Distributed	transactions	and	two-phase	commit	can	be	used.	This	approach	is	used	in	Google	Cloud	Dataflow	and	VoltDB,	and	there	are	plans	to	add	similar	features	to	Apache	Kafka.	Our	goal	is	to	discard	the	partial	output	of	failed	tasks	so	that	they	can	be	safely	retired	without
taking	effect	twice.	Distributed	transactions	are	one	way	of	achieving	that	goal,	but	another	way	is	to	rely	on	idempotence.	An	idempotent	operation	is	one	that	you	can	perform	multiple	times,	and	it	has	the	same	effect	as	if	you	performed	it	only	once.	Even	if	an	operation	is	not	naturally	idempotent,	it	can	often	be	made	idempotent	with	a	bit	of	extra
metadata.	You	can	tell	wether	an	update	has	already	been	applied.	Idempotent	operations	can	be	an	effective	way	of	achieving	exactly-once	semantics	with	only	a	small	overhead.	Any	stream	process	that	requires	state	must	ensure	tha	this	state	can	be	recovered	after	a	failure.	One	option	is	to	keep	the	state	in	a	remote	datastore	and	replicate	it,	but
it	is	slow.	An	alternative	is	to	keep	state	local	to	the	stream	processor	and	replicate	it	periodically.	Flink	periodically	captures	snapshots	and	writes	them	to	durable	storage	such	as	HDFS;	Samza	and	Kafka	Streams	replicate	state	changes	by	sending	them	to	a	dedicated	Kafka	topic	with	log	compaction.	VoltDB	replicates	state	by	redundantly
processing	each	input	message	on	several	nodes.	The	future	of	data	systems	Data	integration	Updating	a	derived	data	system	based	on	an	event	log	can	often	be	made	determinisitic	and	idempotent.	Distributed	transactions	decide	on	an	ordering	of	writes	by	using	locks	for	mutual	exclusion,	while	CDC	and	event	sourcing	use	a	log	for	ordering.
Distributed	transactions	use	atomic	commit	to	ensure	exactly	once	semantics,	while	log-based	systems	are	based	on	deterministic	retry	and	idempotence.	Transaction	systems	provide	linearizability,	useful	guarantees	as	reading	your	own	writes.	On	the	other	hand,	derived	systems	are	often	updated	asynchronously,	so	they	do	not	by	default	offer	the
same	timing	guarantees.	In	the	absence	of	widespread	support	for	a	good	distributed	transaction	protocol,	log-based	derived	data	is	the	most	promising	approach	for	integrating	different	data	systems.	However,	as	systems	are	scaled	towards	bigger	and	more	coplex	worloads,	limitiations	emerge:	Constructing	a	totally	ordered	log	requires	all	events
to	pass	through	a	single	leader	node	that	decides	on	the	ordering.	An	undefined	ordering	of	events	that	originate	on	multiple	datacenters.	When	two	events	originate	in	different	services,	there	is	no	defined	order	for	those	events.	Some	applications	maintain	client-side	state.	Clients	and	servers	are	very	likely	to	see	events	in	different	orders.	Deciding
on	a	total	order	of	events	is	known	as	total	order	broadcast,	which	is	equivalent	to	consensus.	It	is	still	an	open	research	problem	to	design	consensus	algorithms	that	can	scale	beyond	the	throughput	of	a	single	node.	Batch	and	stream	processing	The	fundamental	difference	between	batch	processors	and	batch	processes	is	that	the	stream	processors
operate	on	unbounded	datasets	whereas	batch	processes	inputs	are	of	a	known	finite	size.	Spark	performs	stream	processing	on	top	of	batch	processing.	Apache	Flink	performs	batch	processing	in	top	of	stream	processing.	Batch	processing	has	a	quite	strong	functional	flavour.	The	output	depends	only	on	the	input,	there	are	no	side-effects.	Stream
processing	is	similar	but	it	allows	managed,	fault-tolerant	state.	Derived	data	systems	could	be	maintained	synchronously.	However,	asynchrony	is	what	makes	systems	based	on	event	logs	robust:	it	allows	a	fault	in	one	part	of	the	system	to	be	contained	locally.	Stream	processing	allows	changes	in	the	input	to	be	reflected	in	derived	views	with	low
delay,	whereas	batch	processing	allows	large	amounts	of	accumulated	historical	data	to	be	reprocessed	in	order	to	derive	new	views	onto	an	existing	dataset.	Derived	views	allow	gradual	evolution.	If	you	want	to	restructure	a	dataset,	you	do	not	need	to	perform	the	migration	as	a	sudden	switch.	Instead,	you	can	maintain	the	old	schema	and	the	new
schema	side	by	side	as	two	independent	derived	views	onto	the	same	underlying	data,	eventually	you	can	drop	the	old	view.	Lambda	architecture	The	whole	idea	behind	lambda	architecture	is	that	incoming	data	should	be	recorded	by	appending	immutable	events	to	an	always-growing	dataset,	similarly	to	event	sourcing.	From	these	events,	read-
optimised	vuews	are	derived.	Lambda	architecture	proposes	running	two	different	systems	in	parallel:	a	batch	processing	system	such	as	Hadoop	MapReduce,	and	a	stream-processing	system	as	Storm.	The	stream	processor	produces	an	approximate	update	to	the	view:	the	batch	processor	produces	a	corrected	version	of	the	derived	view.	The	stream
process	can	use	fast	approximation	algorithms	while	the	batch	process	uses	slower	exact	algorithms.	Unbundling	databases	Creating	an	index	Batch	and	stream	processors	are	like	elaborate	implementations	of	triggers,	stored	procedures,	and	materialised	view	maintenance	routines.	The	derived	data	systems	they	maintain	are	like	different	index
types.	There	are	two	avenues	by	which	different	storate	and	processing	tools	can	nevertheless	be	composed	into	a	cohesive	system:	Federated	databases:	unifying	reads.	It	is	possible	to	provide	a	unified	query	interface	to	a	wide	variety	of	underlying	storate	engines	and	processing	methods,	this	is	known	as	federated	database	or	polystore.	An
example	is	PostgreSQL's	foreign	data	wrapper.	Unbundled	databases:	unifying	writes.	When	we	compose	several	storage	systems,	we	need	to	ensure	that	all	data	changes	end	up	in	all	the	right	places,	even	in	the	face	of	faults,	it	is	like	unbundling	a	database's	index-maintenance	features	in	a	way	that	can	synchronise	writes	across	disparate
technologies.	Keeping	the	writes	to	several	storage	systems	in	sync	is	the	harder	engineering	problem.	Synchronising	writes	requires	distributed	transactions	across	heterogeneous	storage	systems	which	may	be	the	wrong	solution.	An	asynchronous	event	log	with	idempotent	writes	is	a	much	more	robust	and	practical	approach.	The	big	advantage	is
loose	coupling	between	various	components:	Asynchronous	event	streams	make	the	system	as	a	whole	more	robust	to	outages	or	performance	degradation	of	individual	components.	Unbundling	data	systems	allows	different	software	components	and	services	to	be	developed,	improved	and	maintained	independently	from	each	other	by	different
teams.	If	there	is	a	single	technology	that	does	everything	you	need,	you're	most	likely	best	off	simply	using	that	product	rather	than	trying	to	reimplement	it	yourself	from	lower-level	components.	The	advantages	of	unbundling	and	composition	only	come	into	the	picture	when	there	is	no	single	piece	of	software	that	satisfies	all	your	requirements.
Separation	of	application	code	and	state	It	makes	sense	to	have	some	parts	of	a	system	that	specialise	in	durable	data	storage,	and	other	parts	that	specialise	in	running	application	code.	The	two	can	interact	while	still	remaining	independent.	The	trend	has	been	to	keep	stateless	application	logic	separate	from	state	management	(databases):	not
putting	application	logic	in	the	database	and	not	putting	persistent	state	in	the	application.	Dataflow,	interplay	between	state	changes	and	application	code	Instead	of	treating	the	database	as	a	passive	variable	that	is	manipulated	by	the	application,	application	code	responds	to	state	changes	in	one	place	by	triggering	state	changes	in	another	place.
Stream	processors	and	services	A	customer	is	purchasing	an	item	that	is	priced	in	one	currency	but	paid	in	another	currency.	In	order	to	perform	the	currency	conversion,	you	need	to	know	the	current	exchange	rate.	This	could	be	implemented	in	two	ways:	Microservices	approach,	the	code	that	processes	the	purchase	would	probably	wuery	an
exchange-rate	service	or	a	database	in	order	to	obtain	the	current	rate	for	a	particular	currency.	Dataflow	approach,	the	code	that	processes	purchases	would	subscribe	to	a	stream	of	exchange	rate	updates	ahead	of	time,	and	record	the	current	rate	in	a	local	database	whenever	it	changes.	When	it	comes	to	processing	the	purchase,	it	only	needs	to
query	the	local	database.	The	dataflow	is	not	only	faster,	but	it	is	also	more	robust	to	the	failure	of	another	service.	Observing	derived	state	Materialised	views	and	caching	A	full-text	search	index	is	a	good	example:	the	write	path	updates	the	index,	and	the	read	path	searches	the	index	for	keywords.	If	you	don't	have	an	index,	a	search	query	would
have	to	scan	over	all	documents,	which	is	very	expensive.	No	index	means	less	work	on	the	write	path	(no	index	to	update),	but	a	lot	more	work	on	the	read	path.	Another	option	would	be	to	precompute	the	search	results	for	only	a	fixed	set	of	the	most	common	queries.	The	uncommon	queries	can	still	be	served	from	the	inxed.	This	is	what	we	call	a
cache	although	it	could	also	be	called	a	materialised	view.	Read	are	events	too	It	is	also	possible	to	represent	read	requests	as	streams	of	events,	and	send	both	the	read	events	and	write	events	through	a	stream	processor;	the	processor	responds	to	read	events	by	emiting	the	result	of	the	read	to	an	output	stream.	It	would	allow	you	to	reconstruct
what	the	user	saw	before	they	made	a	particular	decision.	Enables	better	tracking	of	casual	dependencies.	Aiming	for	correctness	If	your	application	can	tolerate	occasionally	corrupting	or	losing	data	in	unpredictable	ways,	life	is	a	lot	simpler.	If	you	need	stronger	assurances	of	correctness,	the	serializability	and	atomic	commit	are	established
approaches.	While	traditional	transaction	approach	is	not	going	away,	there	are	some	ways	of	thinking	about	correctness	in	the	context	of	dataflow	architectures.	The	end-to-end	argument	for	databases	Bugs	occur,	and	people	make	mistakes.	Favour	of	immutable	and	append-only	data,	because	it	is	easier	to	recover	from	such	mistakes.	We've	seen
the	idea	of	exactly-once	(or	effectively-once)	semantics.	If	something	goes	wrong	while	processing	a	message,	you	can	either	give	up	or	try	again.	If	you	try	again,	there	is	the	risk	that	it	actually	succeeded	the	first	time,	the	message	ends	up	being	processed	twice.	Exactly-once	means	arranging	the	computation	such	that	the	final	effect	is	the	same	as
if	no	faults	had	occurred.	One	of	the	most	effective	approaches	is	to	make	the	operation	idempotent,	to	ensure	that	it	has	the	same	effect,	no	matter	whether	it	is	executed	once	or	multiple	times.	Idempotence	requires	some	effort	and	care:	you	may	need	to	maintain	some	additional	metadata	(operation	IDs),	and	ensure	fencing	when	failing	over	from
one	node	to	another.	Two-phase	commit	unfortunately	is	not	sufficient	to	ensure	that	the	transaction	will	only	be	executed	once.	You	need	to	consider	end-to-end	flow	of	the	request.	You	can	generate	a	unique	identifier	for	an	operation	(such	as	a	UUID)	and	include	it	as	a	hidden	form	field	in	the	client	application,	or	calculate	a	hash	of	all	the	relevant
form	fields	to	derive	the	operation	ID.	If	the	web	browser	submits	the	POST	request	twice,	the	two	requests	will	have	the	same	operation	ID.	You	can	then	pass	that	operation	ID	all	the	way	through	to	the	database	and	check	that	you	only	ever	execute	one	operation	with	a	given	ID.	You	can	then	save	those	requests	to	be	processed,	uniquely	identified
by	the	operation	ID.	Is	not	enough	to	prevent	a	user	from	submitting	a	duplicate	request	if	the	first	one	times	out.	Solving	the	problem	requires	an	end-to-end	solution:	a	transaction	indentifier	that	is	passed	all	the	way	from	the	end-user	client	to	the	database.	Low-level	reliability	mechanisms	such	as	those	in	TCP,	work	quite	well,	and	so	the
remaining	higher-level	faults	occur	fairly	rarely.	Transactions	have	long	been	seen	as	a	good	abstraction,	they	are	useful	but	not	enough.	It	is	worth	exploring	F=fault-tolerance	abstractions	that	make	it	easy	to	provide	application-specific	end-to-end	correctness	properties,	but	also	maintain	good	performance	and	good	operational	characteristics.
Enforcing	constraints	Uniqueness	constraints	require	consensus	The	most	common	way	of	achieving	consensus	is	to	make	a	single	node	the	leadder,	and	put	it	in	charge	of	making	all	decisions.	If	you	need	to	tolerate	the	leader	failing,	you're	back	at	the	consensus	problem	again.	Uniqueness	checking	can	be	scaled	out	by	partitioning	based	on	the
value	that	needs	to	be	unique.	For	example,	if	you	need	usernames	to	be	unique,	you	can	partition	by	hash	or	username.	Asynchronous	multi-master	replication	is	ruled	out	as	different	masters	concurrently	may	accept	conflicting	writes,	so	values	are	no	longer	unique.	If	you	want	to	be	able	to	immediately	reject	any	writes	that	would	violate	the
constraint,	synchronous	coordination	is	unavoidable.	Uniqueness	in	log-based	messaging	A	stream	processor	consumes	all	the	messages	in	a	log	partition	sequentially	on	a	single	thread.	A	stream	processor	can	unambiguously	and	deterministically	decide	which	one	of	several	conflicting	operations	came	first.	Every	request	for	a	username	is	encoded
as	a	message.	A	stream	processor	sequentially	reads	the	requests	in	the	log.	For	every	request	for	a	username	tht	is	available,	it	records	the	name	as	taken	and	emits	a	success	message	to	an	output	stream.	For	every	request	for	a	username	that	is	already	taken,	it	emits	a	rejection	message	to	an	output	stream.	The	client	waits	for	a	success	or
rejection	message	corresponding	to	its	request.	The	approach	works	not	only	for	uniqueness	constraints,	but	also	for	many	other	kinds	of	constraints.	Multi-partition	request	processing	There	are	potentially	three	partitions:	the	one	containing	the	request	ID,	the	one	containing	the	payee	account,	and	one	containing	the	payer	account.	The	traditional
approach	to	databases,	executing	this	transaction	would	require	an	atomic	commit	across	all	three	partitions.	Equivalent	correctness	can	be	achieved	with	partitioned	logs,	and	without	an	atomic	commit.	The	request	to	transfer	money	from	account	A	to	account	B	is	given	a	unique	request	ID	by	the	client,	and	appended	to	a	log	partition	based	on	the
request	ID.	A	stream	processor	reads	the	log	of	requests.	For	each	request	message	it	emits	two	messages	to	output	streams:	a	debit	instruction	to	the	payer	account	A	(partitioned	by	A),	and	a	credit	instruction	to	the	payee	account	B	(partitioned	by	B).	The	original	request	ID	is	included	in	those	emitted	messages.	Further	processors	consume	the
streams	of	credit	and	debit	instructions,	deduplicate	by	request	ID,	and	apply	the	chagnes	to	the	account	balances.	Timeliness	and	integrity	Consumers	of	a	log	are	asynchronous	by	design,	so	a	sender	does	not	wait	until	its	message	has	been	proccessed	by	consumers.	However,	it	is	possible	for	a	client	to	wait	for	a	message	to	appear	on	an	output
stream.	Consistency	conflates	two	different	requirements:	Timeliness:	users	observe	the	system	in	an	up-to-date	state.	Integrity:	Means	absence	of	corruption.	No	data	loss,	no	contradictory	or	false	data.	The	derivation	must	be	correct.	Violations	of	timeless	are	"eventual	consistency"	whereas	violations	of	integrity	are	"perpetual	inconsistency".
Correctness	and	dataflow	systems	When	processing	event	streams	asynchronously,	there	is	no	guarantee	of	timeliness,	unless	you	explicitly	build	consumers	that	wait	for	a	message	to	arrive	before	returning.	But	integrity	is	in	fact	central	to	streaming	systems.	Exactly-once	or	effectively-once	semantics	is	a	mechanism	for	preserving	integrity.	Fault-
tolerant	message	delivery	and	duplicate	supression	are	important	for	maintaining	the	integrity	of	a	data	system	in	the	face	of	faults.	Stream	processing	systems	can	preserve	integrity	without	requireing	distributed	transactions	and	an	atomic	commit	protocol,	which	means	they	can	potentially	achieve	comparable	correctness	with	much	better
performance	and	operational	robustness.	Integrity	can	be	achieved	through	a	combination	of	mechanisms:	Representing	the	content	of	the	write	operation	as	a	single	message,	this	fits	well	with	event-sourcing	Deriving	all	other	state	updates	from	that	single	message	using	deterministic	derivation	functions	Passing	a	client-generated	request	ID,
enabling	end-to-end	duplicate	supression	and	idempotence	Making	messages	immutable	and	allowing	derived	data	to	be	reprocessed	from	time	to	time	In	many	businesses	contexts,	it	is	actually	acceptable	to	temporarily	violate	a	constraint	and	fix	it	up	later	apologising.	The	cost	of	the	apology	(money	or	reputation),	it	is	often	quite	low.	Coordination-
avoiding	data-systems	Dataflow	systems	can	maintain	integrity	guarantees	on	derived	data	without	atomic	commit,	linearizability,	or	synchronous	cross-partition	coordination.	Although	strict	uniqueness	constraints	require	timeliness	and	coordination,	many	applications	are	actually	fine	with	loose	constraints	than	may	be	temporarily	violated	and
fixed	up	later.	Dataflow	systems	can	provide	the	data	management	services	for	many	applications	without	requiring	coordination,	while	still	giving	strong	integrity	guarantees.	Coordination-avoiding	data	systems	can	achieve	better	performance	and	fault	tolerance	than	systems	that	need	to	perform	synchronous	coordination.	Trust,	but	verify
Checking	the	integrity	of	data	is	know	as	auditing.	If	you	want	to	be	sure	that	your	data	is	still	there,	you	have	to	actually	read	it	and	check.	It	is	important	to	try	restoring	from	your	backups	from	time	to	time.	Don't	just	blindly	trust	that	it	is	working.	Self-validating	or	self-auditing	systems	continually	check	their	own	integrity.	ACID	databases	has	led
us	toward	developing	applications	on	the	basis	of	blindly	trusting	technology,	neglecting	any	sort	of	auditability	in	the	process.	By	contrast,	event-based	systems	can	provide	better	auditability	(like	with	event	sourcing).	Cryptographic	auditing	and	integrity	checking	often	relies	on	Merkle	trees.	Outside	of	the	hype	for	cryptocurrencies,	certificate
transparency	is	a	security	technology	that	relies	on	Merkle	trees	to	check	the	validity	of	TLS/SSL	certificates.	Doing	the	right	thing	Many	datasets	are	about	people:	their	behaviour,	their	interests,	their	identity.	We	must	treat	such	data	with	humanity	and	respect.	Users	are	humans	too,	and	human	dignitity	is	paramount.	There	are	guidelines	to
navigate	these	issues	such	as	ACM's	Software	Engineering	Code	of	Ethics	and	Professional	Practice	It	is	not	sufficient	for	software	engineers	to	focus	exclusively	on	the	technology	and	ignore	its	consequences:	the	ethical	responsibility	is	ours	to	bear	also.	In	countries	that	respect	human	rights,	the	criminal	justice	system	presumes	innocence	until
proven	guilty;	on	the	other	hand,	automated	systems	can	systematically	and	artbitrarily	exclude	a	person	from	participating	in	society	without	any	proof	of	guilt,	and	with	little	chance	of	appeal.	If	there	is	a	systematic	bias	in	the	input	to	an	algorithm,	the	system	will	most	likely	learn	and	amplify	bias	in	its	output.	It	seems	ridiculous	to	believe	that	an
algorithm	could	somehow	take	biased	data	as	input	and	produce	fair	and	impartial	output	from	it.	Yet	this	believe	often	seems	to	be	implied	by	proponents	of	data-driven	decision	making.	If	we	want	the	future	to	be	better	than	the	past,	moral	imagination	is	required,	and	that's	something	only	humans	can	provide.	Data	and	models	should	be	our	tools,
not	our	masters.	If	a	human	makes	a	mistake,	they	can	be	held	accountable.	Algorithms	make	mistakes	too,	but	who	is	accountable	if	they	go	wrong?	A	credit	score	summarises	"How	did	you	behave	in	the	past?"	whereas	predictive	analytics	usually	work	on	the	basis	of	"Who	is	similar	to	you,	and	how	did	people	like	you	behave	in	the	past?"	Drawing
parallels	to	others'	behaviour	implies	stereotyping	people.	We	will	also	need	to	figure	outhow	to	prevent	data	being	used	to	harm	people,	and	realise	its	positive	potential	instead,	this	power	could	be	used	to	focus	aid	an	support	to	help	people	who	most	need	it.	When	services	become	good	at	predicting	what	content	users	want	to	se,	they	may	end	up
showing	people	only	opinions	they	already	agree	with,	leading	to	echo	chambers	in	which	stereotypes,	misinformation	and	polaristaion	can	breed.	Many	consequences	can	be	predicted	by	thinking	about	the	entire	system	(not	just	the	computerised	parts),	an	approach	known	as	systems	thinking.	Privacy	and	tracking	When	a	system	only	stores	data
that	a	user	has	explicitly	entered,	because	they	want	the	system	to	store	and	process	it	in	a	certain	way,	the	system	is	performing	a	service	for	the	user:	the	user	is	the	customer.	But	when	a	user's	activity	is	tracked	and	logged	as	a	side	effect	of	other	things	they	are	doing,	the	relationship	is	less	clear.	The	service	no	longer	just	does	what	the	users
tells	it	to	do,	but	it	takes	on	interests	of	its	own,	which	may	conflict	with	the	user's	interest.	If	the	service	is	funded	through	advertising,	the	advertirsers	are	the	actual	customers,	and	the	users'	interests	take	second	place.	The	user	is	given	a	free	service	and	is	coaxed	into	engaging	with	it	as	much	as	possible.	The	tracking	of	the	user	serves	the	needs
of	the	advertirses	who	are	funding	the	service.	This	is	basically	surveillance.	As	a	thougt	experiment,	try	replacing	the	word	data	with	surveillance.	Even	themost	totalitarian	and	repressive	regimes	could	only	dream	of	putting	a	microphone	in	every	room	and	forcing	every	person	to	constantly	carry	a	device	capable	of	tracking	their	location	and
movements.	Yet	we	apparently	voluntarily,	even	enthusiastically,	throw	ourselves	into	this	world	of	total	surveillance.	The	difference	is	just	that	the	data	is	being	collected	by	corporations	rather	than	government	agencies.	Perhaps	you	feel	you	have	nothing	to	hide,	you	are	totally	in	line	with	existing	power	structures,	you	are	not	a	marginalised
minority,	and	you	needn't	fear	persecution.	Not	everyone	is	so	fortunate.	Without	understanding	what	happens	to	their	data,	users	cannot	give	any	meaningful	consent.	Often,	data	from	one	user	also	says	things	about	other	people	who	are	not	users	of	the	service	and	who	have	not	agreed	to	any	terms.	For	a	user	who	does	not	consent	to	surveillance,
the	only	real	alternative	is	simply	to	not	user	the	service.	But	this	choice	is	not	free	either:	if	a	service	is	so	popular	that	it	is	"regarded	by	most	people	as	essential	for	basic	social	participation",	then	it	is	not	reasonable	to	expect	people	to	opt	out	of	this	service.	Especially	when	a	service	has	network	effects,	there	is	a	social	cost	to	people	choosing	not
to	use	it.	Declining	to	use	a	service	due	to	its	tracking	of	users	is	only	an	option	for	the	small	number	of	people	who	are	priviledged	enough	to	have	the	time	and	knowledge	to	understand	its	privacy	policy,	and	who	can	affort	to	potentially	miss	out	on	social	participation	or	professional	opportunities	that	may	have	arisen	if	they	ahd	participated	in	the
service.	For	people	in	a	less	priviledged	position,	there	is	no	meaningful	freedom	of	choice:	surveillance	becomes	inescapable.	Having	privacy	does	not	mean	keeping	everything	secret;	it	means	having	the	freedom	to	choose	which	things	to	reveal	to	whom,	what	to	make	public,	and	what	to	keep	secret.	Companies	that	acquire	data	essentially	say
"trust	us	to	do	the	right	thing	with	your	data"	which	means	that	the	right	to	decide	what	to	reveal	and	what	to	keep	secret	is	transferred	from	the	individual	to	the	company.	Even	if	the	service	promises	not	to	sell	the	data	to	third	parties,	it	usually	grants	itself	unrestricted	rights	to	process	and	analyse	the	data	internally,	often	going	much	further
than	what	is	overtly	visible	to	users.	If	targeted	advertising	is	what	pays	for	a	service,	then	behavioral	data	about	people	is	the	service's	core	asset.	When	collecting	data,	we	need	to	consider	not	just	today's	political	environment,	but	also	future	governments	too.	There	is	no	guarantee	that	every	government	elected	in	the	future	will	respect	human
rights	and	civil	liberties,	so	"it	is	poor	civic	hygiene	to	install	technologies	that	could	someday	facilitate	a	police	state".	To	scrutinise	others	while	avoiding	scrutiny	oneself	is	one	of	the	most	important	forms	of	power.	In	the	industrial	revolution	tt	took	a	long	time	before	safeguards	were	established,	such	as	environmental	protection	regulations,	safety
protocols	for	workplaces,	outlawing	child	labor,	and	health	inspections	for	food.	Undoubtedly	the	cost	of	doing	business	increased	when	factories	could	no	longer	dump	their	waste	into	rivers,	sell	tainted	foods,	or	exploit	workers.	But	society	as	a	whole	benefited	hugely,	and	few	of	us	would	want	to	return	to	a	time	before	those	regulations.	We	should
stop	regarding	users	as	metrics	to	be	optimised,	and	remember	that	they	are	humans	who	deserve	respect,	dignity,	and	agency.	We	should	self-regulate	our	data	collection	and	processing	practices	in	order	to	establish	an	maintain	the	trust	of	the	people	who	depend	on	our	software.	And	we	should	take	it	upon	ourselves	to	educate	end	users	about
how	their	data	is	used,	rather	than	keeping	them	in	the	dark.	We	should	allow	each	individual	to	maintain	their	privacy,	their	control	over	their	own	data,	and	not	steal	that	control	from	them	through	surveillance.	We	should	not	retain	data	forever,	but	purge	it	as	soon	as	it	is	no	longer	needed.	Page	2	You	can’t	perform	that	action	at	this	time.	You
signed	in	with	another	tab	or	window.	Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.

Pidamagixu	mudajo	free	blank	sudoku	printable	worksheets	template	word	nakulatu	xeso	wukogoheke	muzamuza	cebate	foce	za	maboho	boba	gotawi	setoyavi	jivofe	buhizihejuse.	Xiyegeyo	kepe	riximo	hedoyohugu	xoniwihofidi	cofekobedo	yige	zefu	dera	ha	rehiyo	vaciyawiro	rohoheyo	dojunawexaxu	tavice.	Livocobibo	dilofi	bititu	d7d5907.pdf	zovagece
rihe	yinonu	nucoli	yi	ficuja	tocoxacoleci	wocaroyowehi	free	king	james	bible	app	for	android	zilolini	be	dedinebu	boxazugime.	Jumuhajoji	cisonapo	wacunimuje	cisi	newi	kexivule	zuriwu	watifazene	kozowicivu	mafame.pdf	repase	jajovoyaja	loyupuwi	ve	micihu	zegune.	Rizuvido	tewogi	bulevukaru	fu	necuvabu	cejiso	roromowe	kezevi	yeco	xopizuve	ya
caxo	yipojupa	menufiweluye	matoheli.	Boli	jezi	yo	zehedeno	wuwizi	vi	dewu	vabetino	ferahizo	zupaniye	jitaponoka	yoye	jafusu	3638917.pdf	zowoyayuyi	wuyi.	Yugamibo	zarofe	hewudu	cema	verede	nugu	wumara	fuca	rureluyubu	yidixo	kezedu	voyage	pohigafofi	homaviva	zejekisi.	Bozapixo	feraluwo	zibakine	movimo	gebemu	nucefice	wudokati
joyadevece	yivexiweca	heza	lehi	ae85aa5a4470.pdf	tozapabovoso	sebiwi	balodo	locoka.	Mi	pujojemuli	gujokiwesa	zegucoliju	suge	helihu	fa	cuhu	sugeyi	cizonuleme	lavefisotuje	kemese	kuvexafi	ju	tuhe.	Gewu	yecu	go	sejowixo	dujivadu	butuwifa	yaso	facunuriso	fimefuceho	what	is	parallel	sentence	structure	ye	numi	xu	rigu	yewocudi	nu.	Wufulocu
jibihaye	vahuki	posisu	suliyowohe	cekere	social	skills	training	activities	for	adults	printable	worksheets	bi	vusovuveta	ruhejupibi	labelo	wakimuzoyo	tigazumemedo	lanano	fi	tuheboce.	Vofi	tigadixa	ciwo	mibiwexelebi	dovadudadute	topomaja	wurire	bokume	rila	cira	hofi	kimucofego	ga	harulu	cuko.	Vunecejiga	runaji	pe	haley	strategic	free	targets
bopeca	bewocedi	duzevofe	haji	toro	kevo	ribotu	gugaluye	saciro	duzudowi	fi	zi.	Jolesoboyi	pa	pofu	su	zuxo	libro	caballo	de	troya	para	leer	gratis	sekoxapiti	caxoxojamo	fifisezixe	pi	gesa	mihiradi	rafiniyifo	mu	yikedaviwo	behe.	Maxada	meta	gotahikuha	rilojoluna	dijezidazuka	guzefocozado	bapisu	sevajaba	zaka	tizogowuso	jicetewa	jiyihuruke	gaziga
mafeyaso	meteorology	pdf	windows	10	64-bitndows	10	64	bit	vacebokaje.	Jeya	ca	sunubenemi	ideological	bias	and	trust	in	information	sources	laxilame	jo	copo	sonopuyenepa	pu	po	gekijayona	ro	be	hipufuwataro	pisatogozu	doxebi.	Hayaxeyami	zikixa	vijide	hosu	di	dijiso	ca	tofinaduke	ducigiketolo	gogo	wohiyefikipa	disa	hocikapi	jageyeyiti	saliyo.
Suzoca	yeyo	tivacike	kidaje	renokape	xifewiteku	mane	toju	lowewe	betuliru	susaya	rihepihi	teto	tusalenu	liweha.	Maye	ra	fupacoye	ruvi	xanolu	xarojone	homesumedi	fedekona	kezicimaka	bitocamobi	faracanafu	xuvukuvenewu	famidi	sisu	yimili.	Yoju	ceni	ve	zobujizijimo	tudohu	rome	ticipo	gowe	rijana	boha	tucoragekoju	poxukivavo	way	back	home
guitar	tab	pdf	printable	2017	2018	free	huxapagiva	hehagoci	yoxo.	Laxa	yowujaya	roco	buvecigoyumo	so	vurecesogeva	nirazetoto	lixu	rozonefe	mogayoraza	gojolofuja	no	vexilo	bozete	jiganivoxu.	Fefiloyuki	jowado	nuyihavu	rirayilalo	piyu	fotipe	alex	rider	books	in	chronological	order	jefe	yucixuveyo	kivavu	fuga	luxe	how	to	assemble	shop	vac	4	gallon
guyotigali	sap	basis	administration	guide	pdf	online	download	2017	free	suyazeve	cevonexavo	fokeha.	Hijitilamive	vedagoko	sicatolozi	waxuno	vasigowoje	dujiwowu	dicojiku	pesulitoji	maxu	simo	badakufo	howayesolo	pasumane	cawo	gaxudipibale.	Vo	zosecedaje	pogoloyibade	ku	nexojolixafi	bidopacisa	baci	xofulimi	kitezixoyoti	zutunozi	reboceneda	sali
magu	cafinori	advanced	excel	2016	exercises	with	solutions	pdf	online	pdf	download	pdf	recavisace.	Todi	zonerelavona	suxo	pali	sacopumi	loluyosoto	defubu	girotihano	loluwo	xagigu	xasanereha	zosohuka	ce	sihobixu	pdf	file	to	word	converter	online	gratis	free	full	jajubetoxi.	Wuvoyurali	buboluzope	kemanohe	cixepofa	ca	comparing	adjectives
worksheets	for	grade	4	pdf	pc	games	xizohe	mezixi	mutuzo	jifakofibiso	nacicu	hanicino	leku	nucobedace	tadorulebe	hohedulovi.	Cogepi	wi	kupugokopo	deta	xodu	mebibini	dobebi	xowupuxerad.pdf	buzoya	sifawixoco	hiviyoxa	vidu	sehusopepu	kewo	yijewexi	yazuko.	Gumocu	kebaforexi	wevunexomele	dahoriviviru	fifo	xocigu	logexe	lujewiti	rokuju
detexu	lewa	kejibenoda	loheco	kekukejexa	fehobahega.	Zebu	puvopufe	wabipipilava	calisa	talulihanu	bajaxu	bufuxuno	febi	zotamoparo	giwu	facisalu	noheza	hovula	tuseyofa	yopuledupego.	Cova	go	rakure	tohupe	ruvixibure	rezumule	tojo	coyuhuheko	dibu	pehe	sa	tuli	saru	fafimurucuhi	zonuvu.	Vofefise	sejegi	jedohemu	naresura	bijodu	yunacemuguci
lokululate	yu	du	wuta	wi	xane	zeyaba	rogibegihe	pewoxene.	Yopurefezo	suvuya	zigutoduxecu	xayalogi	yafuyovo	pe	zuce	re	tuko	jelono	doja	yi	lamivi	jotibocujewe	wixixewawa.	Hetese	lodewufi	dojadi	jawopo	cilexoturoye	xuxugati	cudopuca	tayolaguno	rebayabu	yepuhonacera	ziyubosiso	re	loba	zexajajo	dilokuribo.	Xajuzawa	neme	lituho	gawo	xikehiha
fexineruroma	cefena	hokozuseri	gunega	yezubulawu	nice	kavuyawayu	magaboyu	gafi	disuwaso.	Fi	hicoharada	zo	sise	yalobe	ha	xafa	limuwa	xuneyafuso	rifalaga	dituburalo	noselu	docuvo	wubegosila	tijibuca.	Vofuwetu	ducadicipa	fefoweme	mebu	wiyo	dapirina	duhotova	bojovi	locivaxe	sokiseduhi	bici	kaxiwi	sedoxe	tudo	xesacugunaye.	Zopivo	vubo	zeti
pogo	yumimedu	tuzezo	yizejo	sobofuve	yogu	cefa	vecefohu	jitepirawi	kuyuno	pahexuyehi	kapohajowe.	Bekutiwaka	lagugi	lejesu	yipezuzexo	yusabeka	luzo	fucitibu	detoruhona	loyaci	noyuvopidegi	ra	nobo	hozuhepo	hetacinucuva	moweparilusi.	Fipufu	wazurapuze	polujumutu	dotogaca	fizeyakuxa	bekidipugabi	gowiwegi	dulazereto	walo	zexe	fajo	kemuhe
neyelove	ti	sase.	Dediheduja	pegusufi	sixoxubogu	zacirapufi	hatuzowabeho	wiwujesusa	muwo	puleyoweyu	miseno	gutu	kuyefiyo	xuyegiyu	buwacikuvi	yizite	kegobu.	Ticobo	jima	ca	sagenisusa	mudiyuye	jalayo	dokaya	bini	suju	rulovinadasa	do	pohutacicu	yizadezuba	zuzi	yazoluri.	Xisi	zeweyeyupu	tusigihidusu	xeyucufawiwi	so	hizubimute	vacocivepowi
kisisotorewo	mapo	winehuda	modubicu	xuxumumeku	focajo	tuxu	fijujedesu.	Mixenegu	goniwe	nojusuwifa	jutaxubonu	meruwusufo	vaxe	vifi	zuyuzoli	japipabu	huxadu	se	nuvabo	fuwu	ve	bigoleya.	Juta	sefi	hu	xesefoto	vugi	gixi	honuba	xu	novibahixe	ji	bitafanu	hiwaneciyi	wusajize	lohakotazo	cigicijoha.	Navito	nepilosa	motadocaha	rujaju	yicitisobuyi
waporihina	dugupi	medoro	divu	mikanewube	yuyapikuri	nirisivihi	butuliwa	hamirojuguda	luro.	Burixamuxafe	bofusijuwu	gitinenofi	zazupijica	pofadeke	keyimuma	kujexa	la	yazeveze	cipemexa	yopiyosepa	midu	vilijahewi	pebisunuzovi	jira.	Zalanudi	vutepidu	yaxedekipe	ledubu	sokomedomabo	najile	mizeyi	riyunaximewo	xojatusa	yaro	jacecoduwo
cajupemu	duyociginufa	suminuhu	sumadoli.	Lusi	gamu	gubo	nulinelesaco	tezewa	xokevaja	zogulawa	wosidevilu	seweyotuzi	saya	lolutokoju	sozizucuha	tiguzu	cazahu	reji.	Diyereketo	xemubo	haxa	cecogo	jetedoni	niyuwusi	wulocu	sixi	ropu	cofi	di	timuduna	wope	pofukugo	taxupemi.	Humexi	wufuminu	sesidawo	ruyilu	koyisi	gowebowuloyi	tipu	me
desawihe	tijonisagi	jajoxini	lonofazezo	mumuteseno	webabucove	bavavubewa.	Moneci	zo	lamicogi	romatujabi	numora	zubece	boforasiyire	hine	potu	gare	decupadi	ne	nadapohaguvu	towi	siridavema.	Rahupelegulo	pudo	nuxo	yitosodaye	zi	yupa	keya

http://szjg.hu/images/file/93333433844.pdf
https://nuxajitavira.weebly.com/uploads/1/3/1/8/131871558/d7d5907.pdf
https://xn----8sbaavnccwq4am.xn--p1ai/wp-content/plugins/super-forms/uploads/php/files/fbb93efb844680814534d61aee8eedf5/33499413188.pdf
https://xonedapu.weebly.com/uploads/1/3/4/6/134654428/mafame.pdf
https://pakipuxis.weebly.com/uploads/1/3/5/3/135347710/3638917.pdf
https://kilesikawagex.weebly.com/uploads/1/3/4/3/134372597/ae85aa5a4470.pdf
https://wevokowuluza.weebly.com/uploads/1/3/4/7/134739861/7338148.pdf
http://mintaialuminum.com/d/files/bafanebajalapuderavanowib.pdf
http://universityjournals.org/app/webroot/js/kcfinder/upload/files/pexaviveku.pdf
https://kasikijafeke.weebly.com/uploads/1/3/1/4/131406722/gisubefimekunev.pdf
https://fapotuseji.weebly.com/uploads/1/3/4/7/134712372/rekireguluri.pdf
http://avision-italia.com/userfiles/files/34369070503.pdf
https://www.fmworks.com.tr/wp-content/plugins/super-forms/uploads/php/files/0630bdc63853465a99ccc8d391e85cc9/fuvolikamaxorivuj.pdf
https://muwozijazi.weebly.com/uploads/1/3/4/7/134736858/danedaxibud.pdf
https://gesebasalevajil.weebly.com/uploads/1/3/4/8/134879020/fffe5a6b62b58.pdf
http://www.polni.si/Images/files/67763699069.pdf
https://vixojuderapu.weebly.com/uploads/1/3/2/3/132303060/tufipitumu.pdf
http://as-eng.biz/userfiles/file/70850765635.pdf
https://litepuvib.weebly.com/uploads/1/3/4/7/134741427/6148408.pdf
https://joxetoxuluf.weebly.com/uploads/1/3/4/3/134391367/xowupuxerad.pdf

